

Warehouse

Reference
Manual

Taurus Software, Inc.

Taurus Software Inc., 420 Brewster Avenue, Redwood City, CA, 94063
(650) 482-2022

(650) 482-2010 FAX
support@taurus.com

©2008

 -

First Edition, version 2........October 1994
Edition 2, version 2........February 1995

Edition 3, version 2........April 1995
Edition 4, version 2........July 1996

Edition 5, version 2........October 1996
Edition 6, version 2........March 1997
Edition 7, version 2........July 1998

Edition 8, version 2........March 1999
Edition 9, version 2.07........November 1999

Edition 10, version 2.07........April 2003
Edition 11, version 3.02……..June 2008

NOTICE

The information contained in this document is subject to change
without notice.

Taurus Software, Inc. makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Taurus
Software, Inc. shall not be liable for errors herein or for incidental or
consequential damages in connection with the use of this material.

This document contains proprietary information which is protected by
copyright. All rights are reserved. No part of this document may be
reproduced or translated in any form without the prior written consent
of Taurus Software, Inc.

© 1989-2008 by Taurus Software, Inc.

Table of Contents

CHAPTER ONE: INTRODUCTION ... 1

PRODUCT OVERVIEW ... 2
HOW TO USE THIS MANUAL .. 2
PRODUCT VERSION .. 5

CHAPTER TWO: WAREHOUSE SCRIPTS ... 7

SCRIPTING LANGUAGE OVERVIEW ... 8

CHAPTER THREE: WAREHOUSE STATEMENTS ... 13

CALL STATEMENT .. 16
CLOSE STATEMENT ... 18
COMMIT STATEMENT ... 20
COPY STATEMENT ... 23
CREATE STATEMENT .. 30
DEFINE STATEMENT ... 32
DELETE STATEMENT .. 38
DIRECT STATEMENT ... 39
END STATEMENT ... 41
ESCAPE STATEMENT .. 42
EXIT STATEMENT ... 43
FORMAT STATEMENT ... 44
FUNCTION STATEMENT ... 47
GO STATEMENT .. 53
HEADER STATEMENT ... 54
HELP STATEMENT ... 57
IF STATEMENT .. 58
LIST STATEMENT ... 60
OPEN STATEMENT ... 63
PRINT STATEMENT .. 66
READ STATEMENT ... 71
RETURN STATEMENT ... 78
ROLLBACK STATEMENT .. 80
SET STATEMENT ... 82
SETVAR STATEMENT .. 92
SHOW STATEMENT .. 94
START STATEMENT ... 97
TRY STATEMENT .. 99
UPDATE STATEMENT .. 101
WHILE STATEMENT... 102
XEQ STATEMENT .. 103
! STATEMENT ... 105
* STATEMENT .. 106

CHAPTER FOUR: FILE TYPES ... 107

ALLBASE FILE TYPE .. 109
ARCHIVE FILE TYPE .. 113
CSV FILE TYPE .. 119
DB2 FILE TYPE .. 131
FIXED FILE TYPE.. 137

IMAGE FILE TYPE .. 147
ODBC FILE TYPE ... 163
ORACLE FILE TYPE .. 176
REMOTE FILE TYPE ... 183
REPORT FILE TYPE .. 196
TEXT FILE TYPE.. 199
TEXT FILE TYPE.. 206

CHAPTER FIVE: WAREHOUSE EXPRESSIONS ... 213

IDENTIFIERS .. 215
CONSTANTS ... 218
NUMERIC CONSTANTS... 218
STRING CONSTANTS .. 218
SYSTEM CONSTANTS ... 219
$ERR SYSTEM VARIABLE .. 220
OPERATORS .. 224
DATE OPERATORS .. 232
NULL OPERATIONS .. 234
BUILT-IN FUNCTIONS .. 236

CHAPTER SIX: DATA TYPES ... 273

ALLBASE DATA TYPES.. 275
IMAGE DATA TYPES .. 288
ODBC DATA TYPES ... 304
ORACLE DATA TYPES ... 326
SQL DATA TYPES .. 342
WAREHOUSE DATA TYPES .. 359

CHAPTER SEVEN: INSTALLATION AND EXECUTION... 373

WAREHOUSE CLIENT AND SERVER OPTIONS... 375
INSTALLATION ON MPE/IX ... 391
MPE/IX INSTALLATION CONSIDERATIONS ... 392
RUNNING WAREHOUSE ON MPE/IX ... 392
RUNNING THE WAREHOUSE SERVER ON MPE/IX ... 393
INSTALLATION ON UNIX/LINUX .. 396
UNIX INSTALLATION CONSIDERATIONS ... 397
RUNNING WAREHOUSE ON UNIX ... 397
RUNNING THE WAREHOUSE SERVER ON UNIX ... 398
WINDOWS INSTALLATION CONSIDERATIONS .. 402
RUNNING WAREHOUSE ON WINDOWS .. 402
RUNNING THE WAREHOUSE SERVER ON WINDOWS .. 402
UNINSTALLING WAREHOUSE ON WINDOWS .. 407
VALIDATING WAREHOUSE.. 409
AUTHORIZING WAREHOUSE SERVER ACCESS ... 410
CHECKING WAREHOUSE SERVER CONNECTIONS... 417
ENVIRONMENT VARIABLES .. 420

APPENDIX A: TRANSACTIONS AND ERROR HANDLING .. 423

TRANSACTIONS ... 424
ERROR HANDLING .. 427

APPENDIX B: PREPROCESSING ... 429

PREPROCESSING ... 430

APPENDIX C: CHARACTER MAPS .. 439

CHARACTER MAP FILES .. 440

Introduction

 Chapter One 1

Chapter One

Introduction

 Introduction

2 Chapter One

Product Overview Warehouse is a general utility that allows you to
select and move data. Warehouse is not sensitive
to where the data is coming from or going to. It
handles all of the work involved in moving data
(data type conversions, data placement) behind the
scenes.

Warehouse is used to move data:

• When migrating your data from one

database/platform to another

• Into a data warehouse

• Archiving stale data offline or to a historical
database

• Retrieving archived data: Back into its original

database, into an entirely different database, or
directly into a report

• Creating test environments

Warehouse employs advanced client/server
technology to move your data. You write a simple
Warehouse script that accesses either local or
remote databases. When the script is executed,
your data moves exactly where you want it, even to
a distant system running a completely different
operating system and database.

How to Use This
Manual

The Warehouse Reference Manual is designed to
meet the needs of on-line and batch users. The
Warehouse Reference Manual is intended to be a
complete functional description of the Warehouse
product. In Chapter Two, Warehouse Scripts, the
components of scripts and archiving concepts are
introduced through examples. Chapter Three,
Warehouse Statements, provides detailed
information about each Warehouse statement,
including syntax, defaults, restrictions, and
examples. Chapter Four, File Types, describes the
use of each Warehouse statement with all of the
supported file types. Chapter Five, Warehouse
Expressions, explains the use of Warehouse

Introduction

 Chapter One 3

expressions including identifiers, operators and
built-in functions. Chapter Six, Data Types,
explains the details of each of the data types
supported by Warehouse. Chapter Seven,
Installation and Execution, explains the details of
how Warehouse is installed and run on each of the
supported platforms.

More Information
on the Web

We have extensive help available through the
following on-line pages and downloads.

Warehouse User
Guide

This user guide details real world problems and
provides example Warehouse script solutions. The
Warehouse User Guide can be found by:

1. Navigate to http://www.taurus.com
2. Click on Downloads under the Support section
3. Click on Software and Documentation downloads
4. Click on Warehouse User Guide (.pdf
format).

Access to this site requires a Logon ID and a
Password that can be obtained by emailing
support@taurus.com

Frequently Asked
Questions (FAQ)

The FAQ file can be found at
http://www.taurus.com/support/faq.htm. It is
updated on a regular basis and is an external
solution database. In addition to documenting
functionality of our Software, many answers to
problems can be found here, with step by step
solution instructions.

Self Service
Knowledge Base

This is a Taurus Client resource that provides
access to our internal solution database. Client
users can create trouble tickets directly in our case
tracking system, upload related files and view
ticket status. The Knowledge Base system can be
found at:

http://www.taurus.com/support/selfserve.htm

 Introduction

4 Chapter One

Users are required to have a Logon ID and
Password which they can obtain by emailing
support@taurus.com

Introduction

 Chapter One 5

Product Version If you place a customer support call, it is important

that you know the Warehouse version number that
you are using. Since changes are made to
Warehouse between releases, the Customer
Support Representative may not be able to assist
you properly without knowing the product version
you are using.

 The version number appears when Warehouse is
run, and has four parts: major release (single
character), update (number), fix level (numbers),
and operating system code. Warehouse
2.01.0010-M is an example of a product version
number with a major release of 2, update level of
01, fix level of 0010, and operating system of M,
which refers to MPE/iX. The operating system
codes are as follows:

 A Digital Equipment Corp. DEC Unix
Operating system on Alpha architecture

C Santa Cruz Operations OpenServer
Operating system

F Hewlett-Packard HP-UX PA RISC 2.0
(Oracle dynamically linked)

G Hewlett-Packard HP-UX Itanium (Oracle
dynamically linked)

H Hewlett-Packard 9000 HP-UX PA RISC 1.1
(Oracle statically linked)

I Silicon Graphics IRIX Operating system
J SunOS 5.10 Solaris x86
L Red Hat Linux
M Hewlett-Packard 3000 MPE/iX Operating

system.
Q IBM AS/400 system iSeries
R IBM RS6000 system running AIX
S Sun Microsystems system running

SunOS/Solaris SPARC
T Debian Linux (64-bit)
U Microsoft Windows x64 (64-bit)
V DEC VMS (No Longer Supported)
W Microsoft Windows/Windows NT Operating

system (32-bit)
X Unknown

 Introduction

6 Chapter One

 Knowing the correct version can save you time

when calling Customer Support.

Contact Us Phone: (650) 482-2022 x2

Monday through Friday
8:00 a.m. to 5:00 p.m. Pacific Time
(holidays excluded).

FAX: (650) 482-2010

Please include name, company name, and
phone number.

Email: support @ taurus.com

Monday through Friday
6:00 a.m. to 6:00 p.m. Pacific Time
(holidays excluded).

On-line Help Web FAQ

www.taurus.com/support/faq.htm

Self Service Portal:

www.taurus.com/support/selfserve.htm

Triage Cases received by technical support are triaged so
that production stopping issues are handled first.
If you have a production stopping issue, please
email supporting documentation and call us. Non
emergency inquiries are handled in the order they
are received.

Warehouse Scripts

 Chapter Two 7

Chapter Two

Warehouse Scripts

 Warehouse Scripts

8 Chapter Two

Scripting Language
Overview

Warehouse uses a simple scripting language to
define each operation. Usually, Warehouse scripts
are initially created using Taurus Software's
graphical user interface (GUI) DataBridger Studio.
After scripts have been created using DataBridger
Studio, they may be enhanced using any text
editor.

The first part of a script contains OPEN statements
that specify which databases and files are to be
accessed by the script. The second part usually
sets up script variables using the DEFINE
statement. Following the OPENs and DEFINEs, data
is read from the source using the READ statement
and written to the target using the COPY statement.
The "read loop" is the primary construct in a
Warehouse script. The READ statement specifies
which table, dataset, or file is to be read and which
records are to be selected. The READ loop is
terminated with an ENDREAD statement. Between
the READ and ENDREAD all statements are executed
for each record selected. READ statements may be
nested to access several sources simultaneously.
Warehouse scripts may contain other statements to
delete and update data, and language constructs
such as IF and WHILE.

Sample Script The following is a sample Warehouse script that
moves customer records from an IMAGE database
on an HP3000 to an Oracle database on an HP-UX
system:

1. * Loads CUST data into Oracle
2. OPEN CUST IMAGE CUSTDB.DATA &
3. PASS=PW MODE=1
4. OPEN CUSTTGT REMOTE UXSYS &
5. USER=whux PASS=whuxpwd &
6. ORACLE scott/tiger &
7. SID=sid04 HOME=/u01/oradata/ora

8. DEFINE CTGT : USING CUSTTGT.CUST

9. READ CSRC = CUST.CUST-MASTER &
10. FOR ACTIVE = "Y"

Warehouse Scripts

 Chapter Two 9

11. SETVAR CTGT.CUSTOMER_ID = &
12. CSRC.CUSTOMER-ID
13. SETVAR CTGT.CUSTOMER_NAME = &
14. CSRC.CUSTOMER-NAME
15. SETVAR CTGT.ADDRESS = &
16. CSRC.ADDRESS
17. SETVAR CTGT.PHONE = &
18. CSRC.PHONE
19. COPY CTGT TO CUSTTGT.CUST
20. ENDREAD
21. GO

 Line 1: Comment line explaining what the script
does. All lines that begin with an
asterisk (*) are considered comment
lines.

 Line 2: Opens the IMAGE database called

CUSTDB.DATA. (IMAGE refers to the
database system found on Hewlett-
Packard HP3000 MPE computer systems.
IMAGE is also called TurboIMAGE and
IMAGE/SQL.) The database is assigned
a database tag of CUST that is used to
reference the database in the remainder
of the script. Warehouse is case
insensitive so the OPEN statement could
be been open or Open.

 The line ends in an ampersand (&)

indicating that the OPEN statement is to
be continued on the next line.

 Line 3: This is a continuation of line 2. The

IMAGE database CUSTDB.DATA is opened
using a password PW and a database open
mode of 1, which allows read/write access.

 Line 4: Opens the Oracle database on a remote

system named UXSYS. The database type
of REMOTE is used to indicate a remote
system running a Warehouse server. In
this case, the remote system is an HP-UX

 Warehouse Scripts

10 Chapter Two

system running Oracle. The database is
assigned a database tag of CUSTTGT that
is used to reference the Oracle database
in the remainder of the script.

 Line 5: This is a continuation of line 4. A user

name of whux and a password of whuxpwd
is used to connect to the remote system.
For this connection to work, it must have
been previously authorized by the system
administrator of the Unix system UXSYS.
In this example, a plain text password is
used. Warehouse supports the use of
encrypted passwords so that plain text
passwords are not necessary.

 Line 6: This is a continuation of line 4. Indicates

the remote database type is an Oracle
database to be accessed with a user name
of scott and a password of tiger. It is
possible to use encrypted passwords so
that plain text passwords are
unnecessary.

 Line 7: This is a continuation of line 4. The

Oracle SID and Oracle home necessary to
open the database are specified. This
concludes the OPEN statement begun in
line 4.

 Warehouse is designed to be insensitive

to the physical location of the databases.
With the exception of the OPEN
statements, a script will run the same
regardless of which system it executes.
To run this script on the Unix system,
simply change line 2 to open a remote
IMAGE database and line 4 to open a
local Oracle database. No other changes
are necessary in the remainder of the
script.

 Line 8: Defines a record variable named CT that

will be copied to the Oracle database later

Warehouse Scripts

 Chapter Two 11

in the script. CT is defined to be a record
with a layout exactly like the table CUST
within the CUSTTGT (Oracle) database.

 Line 9: The READ statement begins a Warehouse

“read loop.” A read loop is a READ
statement, followed by the body of the
read loop, followed by a matching
ENDREAD statement. The body of the read
loop is executed once for every record
selected by the read statement. In this
case, the CUST-MASTER file is read from
the CUSTDB IMAGE database. All
statements between the READ statement
and the ENDREAD statement on line 20
are executed for each CUST-MASTER
record selected.

 The records read from CUST-MASTER are

assigned a read tag of CSRC. The records
are accessed within the script using
CSRC. Fields within CUST-MASTER are
accessed using the construct
CSRC.fieldname.

 The line ends in an ampersand (&)

indicating that the READ statement is to
be continued on the next line.

 Line 10: This line is a continuation of line 9 and is

considered part of the READ statement.
The FOR keyword is used to specify which
records the READ statement is to select.
In this case, all records having a value of
Y in the ACTIVE field of the
CUST-MASTER file are selected.

 Line 11: Sets the value of the field CUSTOMER_ID

within the variable CT defined on line 8.
The (&) continues the statement to the
next line.

 Line 12: The value CUSTOMER-ID from the CSRC

 Warehouse Scripts

12 Chapter Two

record, which was read from the
CUST-MASTER dataset read in line 9.
Lines 11 through 18 simply load the
record variable CT with values read from
CUST-MASTER.

 Line 13: Sets the value of the field

CUSTOMER_NAME within the variable CT.
The (&) continues the statement to the
next line.

 Line 14: The value CUSTOMER-NAME from the

CSRC record.

 Line 15: Sets the value of the field ADDRESS
within the variable CT. The (&) continues
the statement to the next line.

 Line 16: The value ADDRESS from the CSRC record.

 Line 17: Sets the value of the field PHONE within

the variable CT. The (&) continues the
statement to the next line.

 Line 18: The value PHONE from the CSRC record.

 Line 19: Copies (inserts or writes) the CTGT record

variable to the CUST table in the target
Oracle database.

 Line 20: Terminates the CUST-MASTER read loop

begun in line 4.

 Line 21: Terminates script definition and begins
script processing. No records are read or
written until the GO statement.
Statements before GO are simply checked
for syntax and compiled internally. The
GO statement begins script execution.

Warehouse Statements

 Chapter Three 13

Chapter Three

Warehouse Statements

 Warehouse Statements

14 Chapter Three

Chapter Overview This chapter describes in detail each of the
statements that may be used in a Warehouse
script. The function of each statement is discussed,
along with its syntax, considerations and examples.

Warehouse Scripts Warehouse scripts are contained in a text file and
may be edited with any text editor. Statements are
terminated by the end of line. Blank lines are
ignored.

White space characters (spaces and tabs) at the
beginning of a line and multiple white space
characters are ignored.

All statements, keywords, and identifiers are case
insensitive, converting everything to uppercase
before comparison. To treat an identifier as case
sensitive, enclose the identifier in curly braces ({
}).

Example 1

DEFINE tablename : ODBC CHAR(10)
SETVAR TABLENAME = "Dining"

Warehouse treats both case-versions of tablename
and TABLENAME the same. After execution,
tablename holds the value "Dining".

Example 2

OPEN rec-in ODBC InputTable USER={foo}
READ r = rec-in.{dbo}.table1

Curly braces are required on the User ID and the
table schema to keep them lower case for
comparison. Without the curly braces, the user id
and schema would not be found.

Line Continuation To continue a statement onto the next line an
ampersand (&) is used. There is no maximum line
length.

Warehouse Statements

 Chapter Three 15

Comments Any line where the first nonwhite-space character

is an asterisk (*) is considered a comment.
Comments may also be placed at the end of a line
using two slashes (//) to denote the end of line and
beginning of the comment. e.g.
 ENDREAD // CUSTOMER Table READ

The .csv mapping files for DataBridger Studio
contain comment lines beginning with two slashes
(//). When these mapping files are processed,
Studio substitutes an asterisk for the double
slashes in the script output.

CALL Warehouse Statements

16 Chapter Three

CALL Calls a User-Defined Function.

 The CALL statement is used to call a user-defined
function that does not return a value. Call is also
used to call the Warehouse DIRECT function.

Syntax CALL function-name [(function-parms)]

 function-name is the name of the user-defined
function to be called. See the FUNCTION statement
in this chapter for information on user-defined
functions.

 function-parms is a list of function parameters.
The parameters must match those of the function
definition. See the FUNCTION statement in this
chapter for information on user-defined functions.

Considerations The CALL statement is only used to call functions
that do not have a return value. To call a function
with a return value, use the function name in an
expression.

Examples Example 1

FUNCTION PRINT_PART(PN : ORACLE CHAR(8))

 READ P = PTDB.PARTS FOR PARTNO = PN
 PRINT PARTNO, PARTDESC
 ENDREAD
ENDFUNCTION

READ OD = ODB.ORDLINES &
 FOR ORDNO = "109152"
 CALL PRINT_PART(ORDPARD)
ENDREAD

A function called PRINT_PART is defined that has
one formal parameter PN of type ORACLE CHAR(8).
This function reads from the PARTS table in the
database opened with a tag of PTDB. Records
where PARTNO equals the formal parameter PN are
selected and the fields PARTNO and PARTDESC are
printed. The function PRINT_PART simply prints
the part number and part description for a given

Warehouse Statements CALL

 Chapter Three 17

part number.

 To use the function, the table ORDLINES is read
from the database opened as ODB, where ORDNO
equals "109152". After reading from ORDLINES,
the function PRINT_PART is called using ORDPARD
as an actual parameter.

 See the FUNCTION statement in this chapter for
more examples of the CALL statement.

 Example 2

FUNCTION PRINT_RETAIL(&

PCOST : ORACLE NUMBER, &
PQTY : ORACLE NUMBER)

 PRINT PCOST, PQTY, PCOST * PQTY
ENDFUNCTION

READ OD = ODB.ORDLINES &
 FOR ORDNO = "123456"
 CALL PRINT_RETAIL(ORDCST, ORDQTY)
ENDREAD

This example shows a function that takes two
parameters and prints their value and their
product. The function is called from a read loop
that passes all the lines of Order number 123456.

CLOSE Warehouse Statements

18 Chapter Three

CLOSE Causes Immediate Close of Database.

 The CLOSE statement causes an immediate close of
a database.

Syntax CLOSE db-tag

 db-tag is the database tag of the database/file to
be closed.

Considerations The CLOSE statement immediately closes a
database. Once a database has been closed in may
not be accessed in the remainder of the script or
during script processing.

The most common use of CLOSE is when a database
has been opened only to obtain the layout of tables
or datasets. After FORMAT statements referencing
the database have completed, the database is
closed.

Examples Example 1

OPEN CDB IMAGE CUSTDB PASS=IMPASS MODE=5
FORMAT CFMT : USING CDB.CUSTS
CLOSE CDB
OPEN CFIL FIXED CUSTFIL
READ CDATA = CFIL FORMAT CFMT
 PRINT CUSTNO, CUSTNAME
ENDREAD

 This example opens an Image database CUSTDB
using a database tag of CDB to reference the
database in the remainder of the script. A FORMAT
statement is then issued that defines a record
layout called CFMT that is identical to the record
layout of the CUSTS dataset within the CUSTDB
database. Once the FORMAT statement has been
issued, CUSTDB is no longer needed in the script, so
a CLOSE statement is used to close the database. A
fixed length record file called CUSTFIL is then
opened using a database tag of CFIL. The records
in CUSTFIL have the same format as the records
from CUSTS within CUSTDB so they are read using
the format CFMT. The fields from the file CUSTNO

Warehouse Statements CLOSE

 Chapter Three 19

and CUSTNAME fields are then printed.

COMMIT Warehouse Statements

20 Chapter Three

COMMIT Causes a Warehouse commit operation.

 The COMMIT statement causes a Warehouse commit
operation. The COMMIT statement causes all
databases that have been accessed during the
transaction to be committed.

Syntax COMMIT

Considerations In a typical script the COMMIT statement is
unnecessary. The COMMIT statement is only
provided for sophisticated transaction management
and may cause problems if used inappropriately.

The COMMIT statement performs a commit
operation on all databases accessed by the script
since the previous commit operation. There is no
way to commit a single database.

The effect of a COMMIT statement depends on the
type of database accessed. The effect is as follows
for each database type:

 ALLBASE Performs database commit
ARCHIVE No effect
CSV No effect
DB2 Performs database commit
FIXED No effect, unless MPE/iX message

file opened with NDR, in which case
most recent record read is removed.

IMAGE Unlocks database if locked and
locking not MANUAL. Calls DBXEND
if locking is ROLLBACK.

ODBC Performs database commit
ORACLE Performs database commit
REMOTE Depends on underlying database
REPORT No effect
TEXT No effect

Examples Example 1

OPEN RI &
 REMOTE MPESYS USER=MGR.DBMGR &
 IMAGE IMGDB PASS=IMPASS MODE=5

Warehouse Statements COMMIT

 Chapter Three 21

OPEN LO ORACLE SCOTT/TIGER
DEFINE COUNTER : INTEGER
READ CUST = RI.CUSTOMERS
 COPY CUST TO LO.CUSTOMERS
 SETVAR COUNTER = 0
 READ CT = RI.CUST-TRANS &
 CUSTNO = CUST.CUSTNO
 IF COUNTER = 100
 COMMIT
 SETVAR COUNTER = 0
 ENDIF
 COPY CT TO LO.CUST_TRANS
 SETVAR COUNTER = COUNTER + 1
 ENDREAD
ENDREAD

 This example opens a remote Image database
IMGDB on the MPE/iX system MPESYS. It then
opens a local Oracle database. An integer variable
called COUNTER is defined. The CUSTOMERS dataset
is read from the remote Image database and copied
to the local Oracle database. COUNTER is set to zero
and then matching CUST-TRANS records are read
from the Image database. If 100 transaction
records have already been read and copied to the
Oracle database since the last commit, a COMMIT
statement is executed and COUNTER is reset to zero.
This permits a limit on the number of CUST-TRANS
records copied within a database transaction. The
CUST-TRANS record is then copied to the Oracle
database and COUNTER is incremented.

 Example 2

OPEN mast ODBC DAILYWORK
OPEN emp ODBC EMPMAST
OPEN phon ODBC PHONEMAST
OPEN ship ODBC SHIPPINGMAST

READ r = mast.EMPINFO
 TRY
 READ e = emp.EMP &
 FOR EMPNO = r.EMPNO
 UPDATE e SET FNAME = r.FNAME
 ENDREAD

 READ p = phon.CONTACTS &

COMMIT Warehouse Statements

22 Chapter Three

 FOR EMPNO = r.EMPNO
 UDPATE p SET HOMEPH = r.EMPPHONE
 ENDREAD

 READ s = ship.LOCATIONS &
 FOR EMPNO = r.EMPNO
 UPDATE s SET HOMEADDR = r.SHIPTO
 ENDREAD

 UPDATE r SET STATUS = "PROCESSED"
 COMMIT
 RECOVER
 ROLLBACK
 PRINT r.EMPNO, ": unable to process"
 ENDTRY
ENDREAD

This example shows the combined use of a COMMIT
and ROLLBACK. The input table EMPINFO contains
update information used to populate data to three
other tables. After all three tables are updated, the
input record's status is changed to denote that it's
been processed, and a COMMIT is issued to update
all the database changes. The TRY RECOVER block
is used to prevent partial updates if errors are
encountered before all the tables are updated. If
an error occurs the RECOVER block issues a
ROLLBACK command and prints a message to the
standard output that there was a problem with
processing the input record. The ROLLBACK will
reverse any table updates since the last COMMIT.

Warehouse Statements COPY

 Chapter Three 23

COPY Copies a Record to a File.

 The COPY statement copies (writes) a record to a
file. The source record may be either a read tag
created with a READ statement or a record created
with the DEFINE statement. If the source record
has a different format than the output file,
Warehouse automatically converts the source
record to the format of the output file.

Syntax COPY record TO output-file
 [FORMAT format-name]
 [[;] ERRORS TO error-file]
 [[;] WAIT | NOWAIT]

 record is the name of a record created with either
the DEFINE statement or a read tag created by the
READ statement. See the READ statement in this
chapter for information on read tags.

 output-file is the name of the file to which the
record is copied. When copying to a database,
output-file is in the format
db-tag.table-name. When copying to a CSV,
FIXED or TEXT file, output-file is simply a db-
tag. See Chapter Four, File Types, for more
information.

 format-name is the name of a format previously
created with the FORMAT statement. When
format-name is specified, the format of the
output-file is redefined to be that of the format
specified by format-name.

 error-file is the name of the file to which the
record is copied in the event an error occurs when
copying to output-file. When copying error
records to a database or archive file, error-file
is in the format db-tag.table-name. To copy to a
CSV, FIXED or TEXT file in the event of an error,
error-file is simply the db-tag of the file. See
Chapter Four, File Types, for more information.

 NOWAIT only has an effect when copying to a

COPY Warehouse Statements

24 Chapter Three

remote database. NOWAIT causes Warehouse to
continue processing the script without waiting for
the record to actually be copied to the database.
This allows Warehouse to continue processing the
script without waiting for a response from the
server. NOWAIT is default when copying to a
remote database.

Warning: Using NOWAIT (the default) can have
error recovery implications when used inside a
TRY/RECOVER block, because if an error occurs the
RECOVER statement will NOT be entered with the
record that had the error.

 WAIT only has an effect when copying to a remote
database. WAIT causes Warehouse to wait for the
server to actually copy the record to the database
before continuing. WAIT is typically used to
enhance error recovery within a TRY block.

Using WAIT can have significant performance
implications since the Warehouse client must wait
for a response from the server for each record
written.

Considerations If record has a different format than the
output-file, Warehouse automatically converts
the record to the destination format as follows:

• Different order: Warehouse automatically

copies each field from record to the field of the
same name in the output-file.

• New fields in the output-file: If the

output-file has additional items, Warehouse
initializes numeric type items to zeroes and
string type items to spaces. For a full list of
item types, see Chapter Six, Data Types.

• Missing fields in the output-file: Warehouse

does not copy fields in record that do not have
a corresponding field name in the
output-file.

Warehouse Statements COPY

 Chapter Three 25

• Different data types: Fields from record that
have a different data type than fields of the
same name in the output-file are
automatically converted to the data type of the
field in the output-file.

• Data length changes in alphanumeric fields:

Warehouse truncates data when moved to a
smaller field. Warehouse pads with spaces
when moved to a larger field.

If ERRORS TO is specified, Warehouse first
attempts to copy the record to output-file. If an
error is encountered, an attempt is made to copy
the record to error-file. If an error occurs when
copying to error-file, an error condition is
caused.

If no error-file is specified, and an error is
encountered during the copy, an error condition is
caused. An error condition inside a TRY statement
causes control to switch to the corresponding
RECOVER statement. An error condition outside a
TRY statement causes script processing to stop.

Examples Example 1

OPEN DB1 IMAGE DBONE
OPEN DB2 IMAGE DBTWO.GRP.ACCT
CREATE AR ARCHIVE ARCHFILE
READ SET-1 = DB1.SET-1
 COPY SET-1 TO AR.DBONE.SET-1
ENDREAD
READ SET-2 = DB2.SET-2
 COPY SET-2 TO AR.DBTWO.SET-2
ENDREAD

This example reads and copies all records from the
file SET-1 file in the IMAGE database DBONE to
the archive file ARCHFILE. Then, it copies all of
SET-2 in the IMAGE database DBTWO.GRP.ACCT
to the archive file.

COPY Warehouse Statements

26 Chapter Three

 Example 2

A database was archived many months ago that
had the following structure for the CUSTOMER file:

 CUST-NO, Z10
CUST-NAME, X40
CUST-ADDR1, X40
CUST-ADDR2, X40
LASTSO, Z6
STATUS, X8

The structure of the CUSTOMER file has since been
changed to the following:

 CUST-NO, Z10
CUST-NAME, X40
CUST-ADDR1, X40
CUST-ADDR2, X40
CUST-ADDR3, X40
LASTSO, X10

Note that CUST-ADDR3 has been added, STATUS
has been deleted, and the data type and size of
LASTSO has been changed.

The script used to retrieve CUSTOMER from the
archive file is as follows:

OPEN AR ARCHIVE ARCHFILE
OPEN CUST IMAGE CUSTDB
READ C = AR.CUSTOMER
 COPY C TO CUST.CUSTOMER
ENDREAD

Warehouse copies the contents from CUST-NO,
CUST-NAME, CUST-ADDR1, and CUST-ADDR2 on the
archive tape to the corresponding fields in
CUSTOMER. The STATUS field is not copied because
it doesn't exist in the target file. The CUST-ADDR3
field is initialized to all spaces and the data in the
LASTSO field is converted from Z6 format to X10
format. The data is left-justified and the leading
zeroes are removed.

Warehouse Statements COPY

 Chapter Three 27

 Example 3

OPEN DB1 IMAGE DBONE
OPEN DB2 REMOTE GREEN &
 USER=MYUSER PASS=MYPASS &
 ORACLE SCOTT/TIGER SID=ORCL
CREATE EF ARCHIVE ERRFILE
READ CUST = DB1.CUSTOMERS
 COPY CUST TO DB2.CUSTLIST &
 ERRORS TO EF.BADCUSTS
ENDREAD
READ ORDS = DB1.ORDMAST
 COPY ORDS TO DB2.ORDERS &
 ERRORS TO EF.BADORDS
ENDREAD

This example opens the IMAGE database DBONE on
the local system and assigns it a tag of DB1. It then
opens an Oracle database on the remote system
GREEN. A user name of MYUSER and a password of
MYPASS is used to establish the connection on
GREEN. An Oracle user name of SCOTT and Oracle
password TIGER is used along with a system id
(SID) of ORCL. The Oracle database is assigned a
tag of DB2. An archive file called ERRFILE is
created and assigned a tag of EF.

Once the files have been opened, CUSTOMERS
records are read from DBONE and copied across the
network into the table CUSTLIST in the Oracle
database on GREEN. Any records that cannot be
copied into CUSTLIST in the Oracle database are
instead written to the table BADCUSTS within the
archive file ERRFILE. After the customer records
are read, order records are read from ORDMAST and
copied to ORDERS. Any records that cannot be
copied are written to the table BADORDS within the
archive file ERRFILE.

 Example 4

A school has an ORACLE table named CONTACTS
with the following structure:

ID NUMBER(8)

COPY Warehouse Statements

28 Chapter Three

NAME CHAR(40) ALLOW NULLS
PHONE NUMBER(11) ALLOW NULLS
EMAIL CHAR(30) ALLOW NULLS
LOCATION CHAR(20) ALLOW NULLS
TXNDATE DATE ALLOW NULLS

A group of parents have a call tree database with a
SQL Server table named CALLIST with the
following structure:

ID INT
NAME CHAR(25) ALLOW NULLS
ADDR VARCHAR(50) ALLOW NULLS
PHONE DECIMAL(15,0) ALLOW NULLS
Email VARCHAR(50) ALLOW NULLS
TXNDATE DATETIME ALLOW NULLS

Notice one of the column names has mixed case.
We want to create a script that copies records from
the ORACLE table CONTACTS to the SQL Server
table CALLIST. MyPTA is set up as an ODBC
connection to the SQL Server database.

OPEN SCHOIN ORACLE scott/tiger
OPEN PTAOUT ODBC MyPTA
READ r = SCHOIN.CONTACTS
 COPY r TO PTAOUT.{dbo}.CALLIST
ENDREAD

The COPY command in Warehouse will
automatically convert the data between the two
systems by exactly matching the Column Names
with the following results:

ID is converted from NUMBER(8) to INTEGER;
NAME is truncated from 40 to 25 characters because

the target field is smaller than the source field;
ADDR is null in the target table because the

column doesn't exist in the source table;
PHONE is converted from NUMBER(11) to

DECIMAL(15,0);
EMAIL is null in the target table because the

column name is a different case which causes it
to not match up to the source column;

TXNDATE has the date portion copied with zeroes in
the time portion of the target field because the

Warehouse Statements COPY

 Chapter Three 29

source contains only date information.

CREATE Commands and Statements

30 Chapter Three

CREATE Creates and opens a new file.

 The CREATE statement creates a new archive file or
file to be accessed within the Warehouse script.

Syntax CREATE db-tag file-type [file-parms]

 db-tag is the name of the database tag used to

reference the database or file in the remainder of
the script. A database tag is also called a file tag
when used to access a simple file instead of a
database.

 file-type is the type of file to be created.
Supported values of file-type are:

 ARCHIVE Warehouse archive file
CSV Comma separated file
FIXED Fixed record length file
REMOTE Remote access file
TEXT Text (character) file

 file-parms is the file name of the file to be

created and any file-type specific parameters
needed to create the file. The exact meaning of
file-parms depends on the file-type. See
Chapter Four, File Types, for more information.

Considerations The OPEN and CREATE statements perform the

same basic function, i.e. make a file or database
available for access by Warehouse. The difference
is that OPEN opens an existing database or file and
CREATE makes a new one.

 CREATE and OPEN statements are generally placed
at the top of your script file because files must be
opened before they may be referenced within the
script.

 The CREATE statement overwrites any existing file.

Examples Example 1

CREATE OUT FIXED TMPFILE &

Warehouse Statements CREATE

 Chapter Three 31

 MODE=WRITE ERASE

 This example opens the fixed length record binary
file TMPFILE using mode w for write access. The
file tag OUT is used to access this file in the
remainder of the script.

 Example 2

CREATE AF ARCHIVE ARCHFILE

 This example creates ARCHFILE as a new archive
file for output.

 Example 3

CREATE RT REMOTE GRAPE.TAURUS.COM &
 USER=mary PASS=mpw &
 TEXT /users/mary/wh/scriptlog

 This example creates a text file scriptlog in the
directory /users/mary/wh/ on the remote Unix
computer GRAPE.TAURUS.COM. The remote user is
logged on as user mary using the password mpw.

DEFINE Commands and Statements

32 Chapter Three

DEFINE Defines variables for use in a script.

 The DEFINE statement establishes an internal
variable and defines its data type for later use in a
script. Variable values are assigned using the
SETVAR statement. If the DEFINE statement is
within a function definition, the DEFINE statement
establishes a local variable for use only within the
function.

Syntax DEFINE var-name [, var-name][,...] :
 data-type
 [VALUE initial-value]
 [ALLOW NULLS]
 [CHARSET "character set name"]

where data-type is:

 [db-type] simple-type
 FORMAT format-name
 RECORD item-list END
 USING file

var-name is the name the variable being defined.
Several variables of the same type may be defined
by separating the names by commas.

db-type specifies the database originator of the
type. Examples of db-type are ALLBASE,
IMAGE, and ORACLE. See Chapter Six, Data
Types, for details on specifying data types.

simple-type specifies the data type of the var-
name. See Chapter Six, Data Types, for details on
specifying data types.

FORMAT format-name specifies that the variable
being defined be given the format of a previously
created format using the FORMAT statement.

RECORD item-list specifies the definition of a
record. See Chapter Six, Data Types, for details
on specifying the items within records.

USING file specifies that the variable being

Warehouse Statements DEFINE

 Chapter Three 33

defined has the same format as a file previously
opened with the OPEN statement. This is typically
in the format of db-tag.table-name.

 initial-value specifies an initial value for the
variable being defined. If more than one variable
is defined, all variables receive the same initial
value. The initial-value must be a constant
expression, i.e. it may not reference other variables.

 ALLOW NULLS specifies this data type may contain
no value. When specifying both a CHARSET and
ALLOW NULLS, the keywords may appear in either
order.

 CHARSET “charactersetname” associates a
string data type with a character set. The
character set name, charactersetname, must be
enclosed in quotation marks. When specifying both
a CHARSET and ALLOW NULLS, the keywords may
appear in either order.

When operations with strings of differing character
sets are performed, an automatic character set
conversion is done using the CMAP function.
The operations that can generate an automatic
CMAP are:

Comparison operators: <, <=, =, >=, >,
<>, ==

String assignment: SETVAR statement, UPDATE
statement

String concatenation: ||

Strings may or may not have a character set. When
a string operation is performed, no character set
conversion is done if either string has no character
set or if the strings have the same character set.
Conversion is only done when both strings have a
character set and the two character sets differ.

Automatic character set conversion may be
overridden using the CONVERT or FIELD functions
using a target type with no character set or a

DEFINE Commands and Statements

34 Chapter Three

different character set.

For example, the following two code snippets result
in the same value in TGTNAM:

Snippet 1:
DEFINE SRCNAM : IMAGE X8
DEFINE TGTNAM : ODBC CHAR(8)
SETVAR TGTNAM = CMAP(SRCNAM, &

"HP-ROMAN8", "ISO8859-1")

Snippet 2:
DEFINE SRCNAM : IMAGE X8 CHARSET &

"HP-ROMAN8"
DEFINE TGTNAM : ODBC CHAR(8) CHARSET &

"ISO8859-1"
SETVAR TGTNAM = SRCNAM // Auto CMAP here

Considerations The DEFINE statement can establish either global
or local variables. If the DEFINE statement is
outside a FUNCTION definition, global variables are
established, which means the variable can be
accessed anywhere in the script. If the DEFINE
statement is inside a FUNCTION definition, local
variables are established which may only be
accessed only within the function.

 If no initial-value is specified, the variables are
initialized depending upon the data-type family
as follows:

 Data Type Family Initial Value
 Date January 1, 1901
 Datetime 01-JAN-1901 00:00:00
 Fixed length Binary Binary zeroes
 Fixed length Character Spaces
 Interval 0 00:00:00
 Logical False
 Numeric Zero
 Record Initializes fields
 Time 12:00:00 AM
 Variable length Set length to zero

Examples Example 1

Warehouse Statements DEFINE

 Chapter Three 35

DEFINE NUM'RECORDS : IMAGE I2

 Define a variable called NUM'RECORDS as an
IMAGE 4-byte signed integer. NUM'RECORDS is
initialized to zero.

 Example 2

DEFINE AMOUNT : ODBC DECIMAL(6,2) &
 VALUE -9999.99

 Defines the variable AMOUNT as an ODBC number
with 6 digits of precision: 4 to the left of the
decimal point, and 2 digits to the right. AMOUNT is
given an initial value of -9999.99.

 Example 3

DEFINE COMPANY-NAME : ORACLE CHAR(20)

 Defines the variable COMPANY-NAME as Oracle
character data with a length of 20 bytes.

 Example 4

DEFINE COMPANY : RECORD
 CO-NAME : ORACLE CHAR(40)
 CO-NUM : ORACLE CHAR(10)
 STATUS : ORACLE CHAR(8)
END

 Defines a 58 byte record variable COMPANY that has
three Oracle character elements: CO-NAME, CO-
NUM, and STATUS. Each field within COMPANY is
initialized to spaces.

 Example 5

OPEN DB IMAGE MYDB PASS=MYPASS
DEFINE COMPANY-REC : USING DB.COMPANY

Defines a record called COMPANY-REC that has the
exact same format as the dataset COMPANY within
the database MYDB.

DEFINE Commands and Statements

36 Chapter Three

 Example 6

FORMAT COMPANY-REC : RECORD
 CO_NAME : ORACLE CHAR(40)
 CO_NUM : ORACLE CHAR(10)
 STATUS : ORACLE CHAR(8)
END
DEFINE COMPANY-REC2 : FORMAT COMPANY-REC

Defines a record called COMPANY-REC2 that has the
format of COMPANY-REC.

 Example 7

FUNCTION COPY_ORD &
 (VAR ORDREC : USING DB.ORDERS)

 DEFINE OR : RECORD
 ORDNO : ORACLE CHAR(8)
 CUSTNO : ORACLE CHAR(8)
 ORDDATE : ORACLE DATE
 END

 SETVAR OR.ORDNO = ORDREC.ORDNO
 SETVAR OR.CUSTNO = ORDREC.CUSTNO
 SETVAR OR.ORDDATE = ORDREC.ORDDATE
 COPY OR TO ORDFILE

ENDFUNCTION

Defines a record called OR within the function
COPY_ORD. Since the DEFINE statement is within a
function definition, OR is a local variable and is
only usable within the function COPY_ORD.

 Example 8

DEFINE MYVAR : ORACLE VARCHAR2(20)

CHARSET "ISO8859-1"

DEFINE CNAME : ODBC CHAR(10) ALLOW NULLS

CHARSET "ANSI_X3.4-1968"

Defines a variable length string called MYVAR that
will use the alternate character set ISO8859-1,
and a fixed length string called CNAME that will use
the alternate character set ANSI_X3.4-1968 and

Warehouse Statements DEFINE

 Chapter Three 37

will allow null values.

DELETE Commands and Statements

38 Chapter Three

DELETE Deletes the current record.

 The DELETE statement is used to delete the current
record from a file that was read with a READ
statement.

Syntax DELETE read-tag

read-tag is an active read tag created with the
READ statement. See the READ statement in this
chapter for information on read tags. The DELETE
statement deletes the current record read with the
READ statement.

Considerations The DELETE statement may only be used on files

that support record deletion. See Chapter Four,
File Types, for more information.

When several files are involved, it is often
necessary to make certain deletes are done in a
particular order. For example, when deleting
records from an IMAGE master dataset, all
corresponding detail records must be deleted before
the record can be deleted from the master dataset.

Examples Example 1

OPEN ORDB IMAGE ORDERS
CREATE AR ARCHIVE ARCHFILE
READ ORD = ORDB.ORDERS FOR SHIP = "Y"
 COPY ORD TO AR.ORDERS
 READ LINES = ORDB.ORD-LINES &
 FOR ORD-NO = ORD.ORD-NO
 COPY LINES TO AR.ORD-LINES
 DELETE LINES
 ENDREAD
 DELETE ORD
ENDREAD

 The above script reads, copies and deletes from the
master dataset ORDERS, and the detail dataset
ORD-LINES. Note that the delete for the records in
the ORDERS file is after the delete for ORD-LINES.

Warehouse Statements DIRECT

 Chapter Three 39

DIRECT Direct Database Command

 The DIRECT statement is used to directly execute a
database command. The DIRECT statement is
database dependent and is used to execute SQL
statements when accessing an SQL database.

Syntax DIRECT db-tag, "statement"

 [; IGNORE ERRORS]
 [; SHOW ROWCOUNT]

 db-tag is the tag of an SQL database that has
been opened with the OPEN statement.

 statement is an SQL statement that is executed
immediately during script processing.

 IGNORE ERRORS causes an error returned by
DIRECT processing to be ignored. The DIRECT
statement is executed as the script is processed.
Normally, if any error occurs during script
processing, then script execution after the GO
statement is not done. IGNORE ERRORS causes an
error message to be displayed, but allows script
execution after GO to continue.

 SHOW ROWCOUNT causes the number of rows
affected by the SQL statement to be displayed.

Considerations The DIRECT statement is executed as the script is

processed. This allows the DIRECT statement to
create tables or other objects that can be accessed
later in the Warehouse script.

To use DIRECT as part of script execution after the
GO, the DIRECT function should be called. See
Chapter Five, Warehouse Expressions for details
on the DIRECT function.

Examples Example 1

OPEN DB ORACLE &
 SCOTT/TIGER HOME=D:\ORANT SID=ORCL

DIRECT DB, &

DIRECT Commands and Statements

40 Chapter Three

 "DROP TABLE CTEMP" IGNORE ERRORS
DIRECT DB, &
 "CREATE TABLE CTEMP (" &
 "CUSTNO NUMBER(6) NOT NULL," &
 "CUSTNAME VARCHAR2(40)," &
 "TBALANCE NUMBER(7,2), " &
 ")"

DEFINE CREC : USING DB.CTEMP

READ C=DB.CUSTOMERS FOR PAYSTAT = "DEL"
 SETVAR CREC.CUSTNO = CUSTNO
 SETVAR CREC.CUSTNAME = CUSTNAME
 SETVAR CREC.TBALANCE = 0
 READ U=DB.ORDERS &
 FOR CUSTNO = C.CUSTNO &
 AND BALANCE > 0
 SETVAR CREC.TBALANCE = &
 CREC.TBALANCE + BALANCE
 ENDREAD
 COPY CREC TO DB.CTEMP
ENDREAD

READ X=DB.CTEMP &
 FOR TBALANCE > 1000 &
 ORDER BY TBALANCE DESC
 PRINT CUSTNO, CUSTNAME, TBALANCE
ENDREAD

CALL DIRECT(DB, "DROP TABLE CTEMP")

 The above script opens an Oracle database and
uses a temporary table called CTEMP to add up and
print customer balances. After the OPEN statement
a DIRECT statement is used to drop the table
CTEMP if it already exists. IGNORE ERRORS is
specified because the drop will fail if the table does
not already exist. Another DIRECT statement is
used to create the table CTEMP. A DEFINE
statement is used to create a Warehouse record of
the same format as CTEMP. CUSTOMER and ORDERS
records are then read to total the customer balance
and write the information to the temporary table
CTEMP. CTEMP is read ordered in descending order
of balance for balances greater than $1,000. After
all CTEMP records have been read the DIRECT
function is called to drop the table.

Warehouse Statements END

 Chapter Three 41

END Indicates the end of a construct.

 The END statement indicates the end of a multi-
statement construct. The END statement can be
used as an abbreviated form of ENDIF,
ENDFUNCTION, ENDREAD, ENDTRY, or ENDWHILE.

Syntax END or

ENDFUNCTION or
ENDIF or
ENDREAD or
ENDTRY or
ENDWHILE

Considerations

The END statement may be used as an abbreviation
of ENDFUNCTION, ENDIF, ENDREAD, ENDTRY or
ENDWHILE to indicate the end of a multi-statement
construct.

Examples Example 1

OPEN CUSTDB IMAGE CUSTDB.PUB &
 PASS=WRITER MODE=1
CREATE OUT ARCHIVE ARCFIL
READ CUST-MAST = CUSTDB.CUST-MAST &
 FOR STATUS = "CLOSED"
 COPY CUST-MAST TO ARCHIVE.CUST-MAST
 IF UPDATE-DATE > 940222 THEN
 PRINT CUST-NO, "retained."
 ELSE
 PRINT CUST-NO, "deleted."
 DELETE CUST-MAST
 END
END

The END statement is used in this example to
terminate both the IF and READ statements.

ESCAPE Warehouse Statements

42 Chapter Three

ESCAPE Causes a user error condition.

 The ESCAPE statement causes a Warehouse error
condition. If the error is not caught by a RECOVER
statement, script execution terminates.

Syntax ESCAPE [escape-message]

 escape-message is an optional expression that
describes the error condition. If the ESCAPE
statement is caught by a RECOVER statement, the
escape-message is accessible by accessing the
Warehouse variable $ERR.ESCMSG. If there is no
active TRY/RECOVER statement, then the escape-
message is displayed on stderr before Warehouse
terminates.

Considerations The ESCAPE statement outside a TRY statement
causes Warehouse to display an error message
along with the escape-message then stop
processing the script.

Examples Example 1

OPEN AR ORACLE SCOTT/TIGER
READ CUST = AR.CUSTOMERS
 TRY
 UPDATE CUST SET TOTAL = 0
 RECOVER
 ESCAPE "Error updating customer:" + &
 CUST_NUMBER
 ENDTRY
ENDREAD

 This example opens an Oracle database and
attempts to update each record from the
CUSTOMERS table. If the UPDATE ever fails, the
ESCAPE statement is executed, which causes an
error message containing the customer number to
be printed and then script processing is stopped
since the ESCAPE statement is not caught by a TRY.
If the ESCAPE statement were a PRINT statement
instead, CUSTOMER records would continue to be
read after printing the error message.

Warehouse Statements EXIT

 Chapter Three 43

EXIT Exits Warehouse.

 The EXIT statement exits Warehouse and returns
to the system prompt.

Syntax E[XIT]

Considerations The EXIT statement immediately exits Warehouse

back to the system. No further script processing is
completed.

 By using EXIT instead of GO, Warehouse checks the
syntax and database access of the script, but does
not execute the script.

Examples Example 1

OPEN DB IMAGE SALES PASS=; MODE=1
READ CUSTS = DB.CUSTOMERS
 PRINT CUST-NO, CUST-NAME, ADDR
ENDREAD
EXIT

The EXIT statement causes Warehouse to
immediately terminate without reading any
records.

FORMAT Warehouse Statements

44 Chapter Three

FORMAT Creates a format definition for records and
variables.

 The FORMAT statement creates a format definition
to be used in a later COPY, DEFINE, FORMAT, or
READ statement.

Syntax FORMAT format-name : item-type

where item-type is:

 [db-type] simple-type
 FORMAT format-name
 RECORD item-list END
 USING file

format-name is the name to be given to the
format definition.

db-type specifies the database originator of the
type. Examples of db-type are ALLBASE,
IMAGE, and ORACLE. See Chapter Six, Data
Types, for details on specifying data types.

simple-type specifies the data type of the
format-name. See Chapter Six, Data Types, for
details on specifying data types.

FORMAT format-name specifies that the format
being created be exactly the same as a previously
created format using the FORMAT statement.

RECORD item-list specifies the definition of a
record. See Chapter Six, Data Types, for details on
specifying records.

USING file specifies that the format being
defined has the same format as a file previously
opened with the OPEN statement. This is typically
in the format of db-tag.table-name.

Considerations The FORMAT statement differs from the DEFINE
statement in that no storage is created with the
FORMAT statement. A format is simply a data

Warehouse Statements FORMAT

 Chapter Three 45

description to be applied at a later time (e.g. with a
READ or DEFINE statement); whereas, the DEFINE
statement actually creates data storage that can be
used immediately.

Examples Example 1

FORMAT ORDER : RECORD
 ORDER-NUM : ALLBASE CHAR(16)
 CUST-NUM : ALLBASE CHAR(16)
 DATE : ALLBASE CHAR(8)
 ORD-STAT : ALLBASE CHAR(8)
END

 Describes a 48 byte record format called ORDER
that has four ALLBASE type character elements:
ORDER-NUM, CUST-NUM, DATE, ORD-STAT.

 Example 2

OPEN SEC IMAGE SECDB
FORMAT USER-FMT : USING SEC.USERS

Opens the IMAGE database SECDB using the
database tag SEC. It then creates a format called
USER-FMT that has the exact same format as the
file USERS within the database SEC.

 Example 3

FORMAT COMPANY-REC2 : FORMAT COMPANY-REC

Creates a format called COMPANY-REC2 that has
the format of COMPANY-REC which was previously
created by another FORMAT statement.

 Example 4

FORMAT LINE : ORACLE CHAR(80)

Creates a format called LINE that is an 80 byte
Oracle type character string.

 Example 5

OPEN ORDDB IMAGE ORDERS PASS=POWER

FORMAT Warehouse Statements

46 Chapter Three

OPEN ORDFIL TEXT ORDERF
FORMAT ORDERFMT : RECORD
 ORDER-NUM : ALLBASE CHAR(16)
 CUST-NUM : ALLBASE CHAR(16)
 DATE : ALLBASE CHAR(8)
 ORD-STAT : ALLBASE CHAR(8)
END
READ ORD = ORDFIL FORMAT ORDERFMT
 COPY ORD TO ORDDB.ORDER-HEADER
ENDREAD

Opens the IMAGE database ORDERS and the text
file ORDERF. A 48 byte record format ORDERFMT is
defined that has four ALLBASE type character
elements: ORDER-NUM, CUST-NUM, DATE, ORD-
STAT. The text file ORDERF is read with the records
being described by the format ORDERFMT. The
records from ORDERF are then copied to the ORDER-
HEADER dataset within the ORDERS database.

Warehouse Statements FUNCTION

 Chapter Three 47

FUNCTION Defines a User-Defined Function.

 The FUNCTION statement begins the definition of a
user-defined function. Function parameters are
defined and all statements between FUNCTION and
ENDFUNCTION are considered part of the function
definition. If the function returns a value, it is
called using a Warehouse expression. If the
function does not return a value, it is called using
the CALL statement.

Syntax FUNCTION function-name
 [(parameter-list)]
 [: return-type]

Where parameter-list is:

 [VAR] parm-name : parm-type
 [, [VAR] parm-name : parm-type]
 [, ...]

where parm-type and return-type are of the
form:

 [db-type] simple-type
 FORMAT format-name
 USING file

 function-name is the name of the function being
defined. The function-name may not be the same
as db-tag or a DEFINEd variable.

 parm-name is the formal parameter name. If VAR
precedes the parameter name, the parameter is
passed to the function by reference and the actual
parameter type must exactly match the parameter
type specified in parm-type. If VAR is not
specified, the actual parameter is passed by value
after being converted to parm-type.

 parm-type is the data type of the function
parameter. It indicates the treatment of the
parameter in the body of the function. See Chapter
Six, Data Types, for details on specifying data
types.

FUNCTION Warehouse Statements

48 Chapter Three

 return-type is optional and indicates the data

type of the return value of the function. If
return-type is specified, the function is called by
using it in an expression, and there must be a
RETURN statement in the body of the function that
returns a value of the specified data type. If no
return-type is specified, the function must be
called with the CALL statement, and any RETURN
statements cannot return a value. See Chapter
Six, Data Types, for details on specifying data
types.

 db-type specifies the database originator of the
type. Examples of db-type are ALLBASE, IMAGE,
and ORACLE. See Chapter Six, Data Types, for
details on specifying data types.

 simple-type specifies the data type of the
format-name. See Chapter Six, Data Types, for
details on specifying data types.

 FORMAT format-name specifies a type that was
created using the FORMAT statement.

 USING file specifies a type that has the same
format as a file previously opened with the OPEN
statement. This is typically in the format of db-
tag.table-name.

Considerations A parameter-list is optional in the function
definition. If a function has a parameter list, all
parameters must be present in the calling
statement. Functions may not be defined that have
a variable number of parameters.

 Parameters may be passed either by value or by
reference. To pass a parameter by reference the
keyword VAR must precede the parameter name.

 Parameters passed by VAR must have the exact
same data type as specified in the function
definition.

Warehouse Statements FUNCTION

 Chapter Three 49

 Parameters passed by value (the default) are
converted, if necessary, to the data type specified in
the function header. To pass a parameter by value,
it need not have the same data type as in the
function definition, but it must be of the same data
type family (e.g. numeric, string).

 The following statements are not permitted within
a FUNCTION definition: OPEN, CREATE, FORMAT,
FUNCTION.

 A function may not be defined within an IF
statement, READ loop, WHILE loop, or another
function definition.

 The DEFINE statement may be used to create local
variables within the function. The DEFINE
statement is only supported when it is the first
statement in the function or preceded only by other
DEFINE statements.

 If a predefined Warehouse function and a user-
defined function have the same name (e.g.
CONVERT), the user-defined function overrides the
Warehouse function and the Warehouse function
becomes inaccessible.

 Function recursion is supported, but READ
statements within a recursive function may or may
not work, depending on the type of database read.

Examples Example 1

OPEN ODB IMAGE ORDS PASS=READR MODE=5

FUNCTION NUMORDS (CN : IMAGE X8) &
 : INTEGER
 * Counts the number of orders for CN

 DEFINE NUM : INTEGER
 SETVAR NUM = 0
 READ C = ODB.ORDERS FOR CUSTNO = CN
 SETVAR NUM = NUM + 1
 ENDREAD
 RETURN NUM
ENDFUNCTION

FUNCTION Warehouse Statements

50 Chapter Three

READ C = ODB.CUSTOMERS
 PRINT CUSTNO,CUSTNAME,NUMORDS(CUSTNO)
ENDREAD

 This example opens the IMAGE database ORDS
using a tag of ODB, a password of READR and an
open mode of 5, permitting read-only access. A
function is defined called NUMORDS that has a
formal parameter of type IMAGE X8 called CN.
NUMORDS returns an integer to the caller. A
DEFINE statement is used to define a local integer
variable called NUM that is used to count the
number of orders in the ORDERS dataset. Records
are then read from ORDERS for the matching
customer number. NUM is incremented for each
record read. After the number of orders has been
calculated NUM is returned to the caller.

 Outside of the function definition, the CUSTOMERS
dataset is read and the customer number, customer
name and number of orders placed by the customer
are printed.

 Example 2

OPEN ODB IMAGE ORDERS PASS=RDR MODE=5

FUNCTION FIND_BIGGEST &
 (CN : IMAGE X10, &
 VAR BIGGEST : IMAGE R4)
 * Finds largest order for customer CN

 SETVAR BIGGEST = 0

 READ OL = ODB.ORDLINES FOR CUST = CN
 IF PRICE * QTY > BIGGEST
 SETVAR BIGGEST = PRICE * QTY
 ENDIF
 ENDREAD
ENDFUNCTION

DEFINE BIGGEST : IMAGE R4
READ CUST = ODB.CUSTOMERS
 CALL FIND_BIGGEST(CUSTNO, BIGGEST)
 IF BIGGEST > 10000
 PRINT CUSTNO, CUSTNAME, BIGGEST

Warehouse Statements FUNCTION

 Chapter Three 51

 ENDIF
ENDREAD

 This example opens the IMAGE database ORDERS
using a password of RDR and an open mode of 5. A
function called FIND_BIGGEST is defined that
reads all ORDLINES for a given customer number
and calculates the largest order placed by that
customer. FIND_BIGGEST takes two parameters,
the customer number CN by value, and BIGGEST
which is passed by reference. The CUSTOMERS
dataset is read and if the biggest order the
customer has placed is over $10,000, the CUSTNO,
CUSTNAME, and size of the biggest order are
printed.

 Example 3

FUNCTION GETDESC(PN : IMAGE X12) &
 : IMAGE X48

 READ P = PDB.PARTMASTER &
 FOR PARTNO = PN
 RETURN PARTDESC
 ENDREAD
 RETURN "UNABLE TO FIND PART " || PN
ENDFUNCTION

 The above function takes a part number as an
IMAGE X12 parameter and looks up the part
description in the database. If the part is found,
the description is returned to the caller. If the part
number is not found, an error message is returned
instead.

 Example 4

FUNCTION UPSCUST &
 (CUSTREC : USING CDB.CUSTOMERS) &
 : USING CDB.CUSTOMERS

 DEFINE CR : USING CDB.CUSTOMERS

 SETVAR CR = CUSTREC
 SETVAR CR.CUSTNAME = UPS(CR.CUSTNAME)
 SETVAR CR.CUSTADDR = UPS(CR.CUSTADDR)

FUNCTION Warehouse Statements

52 Chapter Three

 SETVAR CR.CUSTCITY = UPS(CR.CUSTCITY)

 RETURN CR
ENDFUNCTION

 The UPSCUST function defined above takes a
customer record called CUSTREC that has the exact
same layout as the CUSTOMERS table from the
database opened as CDB and returns a record with
the same format. Another record CR is defined
(also with the CUSTOMERS format) as a local
variable within UPSCUST and CR is set to be equal
to CUSTREC. The customer name, address and city
fields are then upshifted in the CR record using the
UPS function. The CR record is returned to the
caller.

 Example 5

FUNCTION UPSCUST &
 (VAR CR : USING CDB.CUSTOMERS)

 SETVAR CR.CUSTNAME = UPS(CR.CUSTNAME)
 SETVAR CR.CUSTADDR = UPS(CR.CUSTADDR)
 SETVAR CR.CUSTCITY = UPS(CR.CUSTCITY)
ENDFUNCTION

This UPSCUST function has basically the same
functionality as the previous function, except that a
VAR parameter is used. This allows the customer
name, address and city to be upshifted within the
record itself, rather than returning a record with
the upshifted values.

Warehouse Statements GO

 Chapter Three 53

GO Begins processing of the script.

 The GO statement terminates the script definition
phase and begins processing the script. At script
completion, Warehouse terminates.

Syntax GO

Considerations A script can only contain one GO statement.

 At the conclusion of the script, statistics are printed
including information on the execution time and
number of records read, copied, updated and
deleted. After execution of the script, all files are
closed and Warehouse terminates.

 If there were any errors during script processing,
no script execution takes place and Warehouse
terminates with the system error flag set. (On
MPE, the job control word JCW is set to FATAL.)

 If no errors are detected during script processing,
the script is executed. If there are errors during
script execution, Warehouse terminates with the
system error flag set. If no errors occur, Warehouse
terminates normally at the end of script execution.

 A GO statement is not required when a script file
name is included as a parameter when Warehouse
is run. In that case, Warehouse automatically
executes the script when the end of the script file is
reached.

Examples None.

HEADER Warehouse Statements

54 Chapter Three

HEADER Generates a page header line.

 The HEADER statement is used to create page
header lines that are displayed at the top of each
print page.

Syntax HEADER [print-list] [comma-semi]

 or

HEADER [rpt-tag][print-list][comma-semi]

 where print-list is:

 print-item [comma-semi print-item...]

where print-item is one of the following:

 $CENTER or
expression [fmt] or
item [fmt] or
$NEW or
$PAGENO [fmt] or
$TAB column

where fmt is either:

 : width or
PIC "picture"

 comma-semi is either a comma (,) or a semicolon

(;) used as a separator. When a comma is used to
separate print items, a space is printed between
items. When a semicolon is used to separate print
items, no space is printed between items. A
HEADER statement with a trailing comma or
semicolon causes the header line to be continued,
with items from the next HEADER statement going
on the same line.

 rpt-tag is the name of the file tag used in the
OPEN statement to open the report file. Note that
the rpt-tag must be enclosed in square brackets
([]). When rpt-tag is specified, the HEADER

Warehouse Statements HEADER

 Chapter Three 55

statement applies only to the indicated report file.

 $CENTER indicates that the following header items
are to be centered on the print page. A $TAB item
causes items to no longer be centered. The page
width may be modified with the SET statement.
Only one $CENTER is permitted per HEADER
statement.

 expression is any string or variable expression
composed of variables and constants. See Chapter
Five, Expressions, for more information.

 $NEW indicates that a new page header is desired
and the old page header is to be discarded. $NEW is
used when two or more report sections are desired.

 $PAGENO indicates that the current page number is
to be displayed.

 $TAB column indicates that the next header item
is to be printed in the column specified by column
with column 1 being the leftmost column.

 width and picture are used to specify item
formatting. See the PRINT statement for more
information.

Considerations Multiple HEADER statements can be used to create
multiple lines of page header.

 The page header is printed at the top of every page.
The page length can be modified using the SET
statement.

Examples Example 1

HEADER $CENTER, "Taurus Software",
HEADER $TAB 70, "Page", $PAGENO : 4
HEADER $CENTER, "Customer Report"
HEADER

HEADER Warehouse Statements

56 Chapter Three

This example creates a three line header. The first
line has Taurus Software centered on the page
with Page and the page number starting in column
70. The page number is four print positions wide.
(The second HEADER statement is a continued on
the same print line as the first HEADER statement
because the first statement ends in a comma.) The
second line has Customer Report centered on the
page, and the third header line is blank.

Warehouse Statements HELP

 Chapter Three 57

HELP Displays help information.

 The HELP statement is used to display help on
Warehouse statements or other topics.

Syntax HELP [topic]

 topic is either a Warehouse statement or a help
topic. If no topic is entered, a list of available
topics is displayed.

Examples Example 1

 1> HELP DELETE

DELETE read-tag

 Deletes a record from a database.
 Requires read-tag from a previous READ statement.

2>

This example displays help on the DELETE
statement.

IF Warehouse Statements

58 Chapter Three

IF Defines the beginning of an IF block.

 The IF statement defines the beginning of a
conditional IF block. The IF statement may have
an optional ELSE block.

Syntax IF condition [THEN]
 statement-list
[ELSE [IF condition [THEN]]]
 statement-list
ENDIF

 condition specifies a Boolean expression to be
evaluated. It may be any Boolean expression
containing arithmetic and string operators. If the
expression evaluates to TRUE, the statement-
list following the IF statement is executed,
otherwise the statement-list following the ELSE
statement is executed (if there is an ELSE). If the
condition is FALSE and there is no ELSE block,
control skips to the ENDIF statement. For more
information on Boolean expressions, see Chapter
Five, Expressions.

 statement-list is a list of Warehouse
statements that may include IF statements.

Considerations The ELSE statement may contain an optional IF
condition that is executed when control falls to the
ELSE and the condition on the ELSE is TRUE.

Examples Example 1

OPEN AR ARCHIVE ARCHFILE
DEFINE STATUS : ORACLE CHAR(16)
READ CUST = AR.CUSTOMERS
 IF CUST-STAT = "HD"
 SETVAR STATUS = "HOLDING"
 ELSE IF CUST-STAT = "IP"
 SETVAR STATUS = "IN PROCESS"
 ELSE IF CUST-STAT = "CL"
 SETVAR STATUS = "CLOSED"
 ELSE
 SETVAR STATUS = "UNKNOWN"
 ENDIF
 PRINT CUST-NO, CUST-NAME, STATUS

Warehouse Statements IF

 Chapter Three 59

ENDREAD

 This example shows how the IF statement
combined with ELSE IF may be used to select from
several expressions.

LIST Warehouse Statements

60 Chapter Three

LIST Lists information.

 The LIST statement displays a list of databases,
files, variables, and formats. LIST is also used to
display a list of tables within a database or archive
file.

Syntax LIST

 or

LIST [db-tag]

 db-tag specifies database tag or archive file tag for
which the tables are to be listed. All tables (files,
or datasets) which belong to the database specified
by db-tag are listed.

If no db-tag is specified, all databases, files,
variables and formats are listed.

Considerations The LIST statement is executed immediately and is
not executed as part of running the script.

 The LIST statement is used to display a general
list of items. The SHOW statement may be used to
obtain specific information about any item
displayed by the LIST statement.

Examples Example 1

OPEN ODB ORACLE SCOTT/TIGER
CREATE TMP TEXT MYTMP
DEFINE SUBTOT : ORACLE NUMBER
FORMAT TMPFMT : RECORD
 ORNO : ORACLE CHAR(12)
 CNO : ORACLE CHAR(12)
END
LIST

Variable definitions:
 SUBTOT : ORACLE NUMBER

Files and Databases:
 ODB : ORACLE DB

Warehouse Statements LIST

 Chapter Three 61

 TMP : TEXT FILE

FORMAT Statements:
 TMPFMT : RECORD

This example shows an Oracle database opened, a
text file called MYTMP created, a variable SUBTOT
defined, and a format called TMPFMT created. The
LIST statement is used to display a list of items
known to Warehouse.

 Example 2

OPEN TDB IMAGE TESTDB PASS=MYPASS MODE=3
LIST TDB

 Dataset Name Type Entries Capacity
 COMPANY D 6415 8000
 USERS M 568 1009
 FORECAST D 2781 6000
 .
 .
 .

This example opens the IMAGE database TESTDB
using a database tag of TDB, a password of MYPASS
and an open mode of 3, for exclusive access. The
LIST statement is used to display all datasets
within TESTDB.

 Example 3

1> OPEN ORAIN ORACLE scott/tiger
2> LIST ORAIN

 TABLE NAME RECORDS PAGES
 ---------- ------- -----
 SYS.DUAL
 SYS.SYSTEM_PRIVILEGE_MAP
 SYS.TABLE_PRIVILEGE_MAP
 . . .
 SCOTT.DEPT
 SCOTT.EMP
 SCOTT.BONUS
 SCOTT.SALGRADE
 . . .

This example defines an Oracle data source to

LIST Warehouse Statements

62 Chapter Three

open, then lists all its tables.

 Example 4

1> OPEN SQLIN ODBC MyPTA
2> LIST SQLIN

TABLE NAME OWNER TYPE
---------- ----- ----
CALLIST dbo TABLE

This example opens a SQL Server data source
through an ODBC connection and lists its tables.

 Example 5

1> OPEN db REMOTE CENTRIC &
2> USER=XXXX PASS=XXXX &
3> DB2 db2matest DB2INSTANCE=db2 &
4> DB2DIR="C:\Program Files\IBM\SQLLIB"
5> LIST db

TABLE NAME OWNER TYPE
---------- ----- ----
ANCHOR ADMINISTRATOR TABLE
ATABA ADMINISTRATOR TABLE
ATABATEST ADMINISTRATOR TABLE
. . .
CUSTOMER EAPL1204 TABLE
CUSTOMER_ADDR EAPL1204 TABLE
. . .

This example opens a DB2 data source called
db2matest on a remote machine called CENTRIC
and lists all structures found there.

Warehouse Statements OPEN

 Chapter Three 63

OPEN Opens an existing database or file

 The OPEN statement opens a database or file to be
accessed within the Warehouse script.

Syntax OPEN db-tag file-type [file-parms]

 db-tag is the database tag used to reference the

database or file in the remainder of the script.

 file-type is the type of database or file. The file
types supported on your version vary according to
operating system and purchase options. Supported
values of file-type are:

 ALLBASE Allbase DBE file
ARCHIVE Warehouse archive file
CSV Comma separated file
DB2 IBM DB2 database
FIXED Fixed record length file
IMAGE IMAGE database
ODBC ODBC SQL Server database
ORACLE Oracle database
REMOTE Remote access file
REPORT Report file
TEXT Text (character) file

 See Chapter Four, File Types, for more

information.

 file-parms is the file name of the database or file
to be opened and any parameters specific to file-
type that are needed to open the database or file.
The exact meaning of file-parms depends on the
file-type. See Chapter Four, File Types, for
more information.

Considerations The OPEN and CREATE statements perform the
same basic function, i.e., make a file or database
available for access by Warehouse. The difference
is that OPEN opens an existing database or file, and
CREATE makes a new one.

OPEN Warehouse Statements

64 Chapter Three

 CREATE and OPEN statements are generally placed
at the top of your script file because files must be
opened before they may be referenced within the
script.

Examples Example 1

OPEN ODB IMAGE ORDERS.PUB.DB &
 PASS=MYPASS MODE=1

 This example opens the IMAGE database
ORDERS.PUB.DB using a password of MYPASS and
an open mode of 1, allowing read-write access. The
database tag ODB is used to access this database in
the remainder of the script.

 Example 2

OPEN A ARCHIVE ARCHFILE

 This example opens ARCHFILE as an input file
using a database tag of A to reference the archive
file.

 Example 3

CREATE RT REMOTE PEAR.TAURUS.COM &
 USER=mary PASS=mpw &
 TEXT D:\udata\mary\wh\scriptlog

 This example creates a text file scriptlog in the
directory D:\udata\mary\wh\ on the remote
Windows server PEAR.TAURUS.COM. The remote
user is logged on as user mary using the password
mpw.

 Example 4

OPEN MYREP REPORT REPFILE
HEADER [MYREP] $CENTER, &
 "ACCOUNT SUMMARY"

 This example opens the report file REPFILE and
creates a page header for it using the HEADER
statement.

Warehouse Statements OPEN

 Chapter Three 65

 Example 5

OPEN db REMOTE CENTRIC &
 USER=myuser PASS=mypass &
 DB2 db2matest DB2INSTANCE=db2 &
 DB2DIR="C:\Program Files\IBM\SQLLIB"

This example opens a DB2 data source called
db2matest on a remote machine called CENTRIC.

 Example 6

OPEN db ORACLE scott/tiger@zoo

This example opens a local ORACLE connection
using tns (transparent network substrate)
redirection to a remote ORACLE data source. The
local ORACLE instance must have an entry in
tnsnames.ora called zoo that describes the
connection redirection to the remote box. The
user/password provided is used to connect to the
remote zoo database.

PRINT Warehouse Statements

66 Chapter Three

PRINT Generates a print line.

 The PRINT statement is used to display record
elements and variables to standard output or to a
report file.

Syntax PRINT [print-list] [comma-semi]

 or

PRINT [[rpt-tag]][print-list] [comma-
semi]

 where print-list is:

 print-item [comma-semi print-item...]

where print-item is one of the following:

 expression [fmt] or
item [fmt] or
$PAGE or
$TAB column

where fmt is either:

 : width or
PIC "picture"

comma-semi is either a comma (,) or a semicolon
(;) used as a separator. When a comma is used to
separate print items, a space is printed between
items. When a semicolon is used to separate print
items, no space is printed between items. A PRINT
statement with a trailing comma or semicolon
causes the print line to be continued, with items
from the next PRINT statement going on the same
line.

 [rpt-tag] is the name of the file tag used in the
OPEN statement to open the report file. Note that
the rpt-tag must be enclosed in square brackets
([]). When [rpt-tag] is specified, the PRINT
statement applies only to the indicated report file.

Warehouse Statements PRINT

 Chapter Three 67

 expression is any string or variable expression
composed of record elements, variables, or numeric
or string constants. See Chapter Five, Expressions,
for more information.

 $PAGE Indicates that a page break is to be inserted
into the report. Subsequent PRINT output is
printed starting at the top of the next print page.

 $TAB column indicates that the next print item is
to be printed in the column specified by column
with column 1 being the leftmost column.

 width specifies the width of the print field.
Numeric type items are right justified and all other
items are left justified.

 picture is a string of characters that indicate the
output format of the item being printed. The
interpretation of the picture depends on the data
type of the item being printed. For numeric items
the picture is similar to the COBOL PICTURE
clause. For date type items, the picture is similar
to the date formatting in Oracle.

Numeric Pictures When formatting a number item, each character of
the picture represents a character position in the
output. A character may be replicated by entering
a number in parentheses after the character, e.g.
X(6) is the same as XXXXXX. The picture
characters are as follows:

 Numeric PIC characters

Z If a Z matches a leading zero in the field's

content, it is replaced by a blank. If not, Z
is replaced by a digit in the field's content.

9 Each 9 is replaced by one digit from the

field's content.

* If an asterisk matches a leading zero in the
field's content, a * is placed in that
character position. If not, it is replaced by

PRINT Warehouse Statements

68 Chapter Three

a digit from the field's content.

0 A 0 is placed in that character position.

, If all digits to the left of the comma are
suppressed zeros, the comma is replaced by
a blank. If not, a comma is inserted in that
character position.

. A decimal point is inserted in that

character position. An edit string for a
numeric field can contain only one period.

- If only one minus sign (-) is specified, it is

replaced by either a blank (if the field's
content is positive) or a minus sign (if it is
negative). If more than one minus sign is
specified, then the minus sign is floating.

+ If only one plus sign (+) is specified, it is

replaced by either a plus sign (if the field's
content is positive) or a minus sign (if it is
negative). If more than one plus sign is
specified, then the plus sign is a floating
sign.

$ If only one dollar sign is specified, it is

replaced by a $ in that character position.
If more than one dollar sign is specified,
the dollar sign is floating.

CR If the field's content is positive, the letters

CR are inserted. If the field's content is
negative, CR is replaced by 2 blanks.

DB If the field's content is negative, the letters

DB are inserted. If the field's content is
positive, DB is replaced by 2 blanks.

% A percent sign is inserted in that character

position.

Date Pictures When formatting a date item, each token
represents one element of a date or time. A list of

Warehouse Statements PRINT

 Chapter Three 69

the picture tokens can be found in Chapter 5:
Warehouse Expressions - Built-In Functions,
DATE2STR.

Examples Example 1

PRINT "CUST-NO", $TAB 20, "CUSTOMER
NAME"
PRINT CUST-NO, $TAB 20, CUST-NAME

Prints CUST-NO at column 1, and CUSTOMER-NAME
at column 20 as column headings, then prints the
CUST-NO field followed by CUST-NAME field.

 Example 2

PRINT PART-NO:8; "":6; PART-DESC:30

Prints the PART-NO field using a width of 8
characters, followed by 6 spaces, followed by PART-
DESC using 30 characters. Note the use of the
semicolon separator to suppress the space between
items. If commas had been used instead of
semicolons, the part number would have been
separated from the description by 8 spaces instead
of 6.

 Example 3

OPEN MYRPT REPORT RPTFILE
PRINT [MYRPT] CUST-NO,CUST-NAME : 30,
PRINT [MYRPT] BALANCE PIC "Z(7)9.99"

Prints CUST-NO, then CUST-NAME using a width of
thirty characters, followed by BALANCE all on the
same line. BALANCE is formatted with up to seven
leading zeros displayed as blanks, followed by a
digit, followed by a decimal point and two digits
after the decimal point. Both lines are printed to
the report file RPTFILE using the tag MYRPT.

 Example 4

PRINT 1, 1234.567 PIC "9(8)"

PRINT Warehouse Statements

70 Chapter Three

PRINT 2, 1234.567 PIC "9(8).99"
PRINT 3, 1234.567 PIC "Z(7)9.99"
PRINT 4, 1234.567 PIC "+Z(7)9.99"
PRINT 5, 1234.567 PIC "+(7)9.99"
PRINT 6, 1234.567 PIC "$(7)9.99"
PRINT 7, 1234.567 PIC "$(7)9.99+"
PRINT 8, -1234.567 PIC "*(7)9.99+"
PRINT 9, 1234.567 PIC "-Z,ZZZ,ZZZ"
PRINT 10, -1234.567 PIC "--Z,ZZZ,ZZZ.99"

 1 00001235
 2 00001234.57
 3 1234.57
 4 + 1234.57
 5 +1234.57
 6 $1234.57
 7 $1234.57+
 8 ****1234.57-
 9 1,235
10 -1,234.57

This example shows a series of PRINT statements
with PICs and the resulting output.

 Example 5

PRINT $NOW PIC "DY, Mon DD, YYYY"

Prints the current time as calculated by the $NOW
system variable, e.g. "Fri, Aug 30, 1996"

 Example 6

PRINT $NOW PIC "HH24:MI:SS TZH:TZM"

Displays "11:28:12 -08:00"

Warehouse Statements READ

 Chapter Three 71

READ Reads records from a database or file.

 The READ statement begins a loop that reads
records from a database or file. The READ loop
must be terminated by an ENDREAD statement.

Syntax READ read-tag = file
 [FORMAT format-name]
 [FOR condition]
 [ORDER BY order-list]

 statement-list

ENDREAD

where order-list is:

 order-item [ASC | DESC] [, ...]

read-tag is the name of the read tag created by
the READ statement. The read tag name is used to
access the data record within the read loop and to
perform operations such as update and delete. The
read tag is also used to access fields within the
record read by the READ statement using the
syntax read-tag.field-name.

 file is the identifier of the file from which the
data is to be read. This is typically in the format of
db-tag.table-name. See Chapter Four, File
Types, for more information.

 format-name is the name of a format previously
created with the FORMAT statement. When
format-name is specified, the format of the records
read from the file is redefined to be of the format
format-name.

 condition specifies the condition upon which
processing of the READ loop continues. If the
condition is TRUE, then the statements within
the READ loop are executed. If the condition is
FALSE then the next record in file is read and
tested for condition. If no condition is
specified, all records in file are read serially. The

READ Warehouse Statements

72 Chapter Three

condition may be any valid Boolean expression.
For more information on Boolean expressions, see
Chapter Five, Expressions.

 order-item is the name of a field within the
record being read. When an ORDER BY clause is
specified, records are read in the specified sort
order. If ASC (the default) is specified, the records
selected by the FOR condition are read in ascending
order. If DESC is specified, the records are read in
descending order.

 statement-list is a list of Warehouse
statements that are executed for every qualifying
record read. statement-list may include other
READ statements.

Considerations When no condition is specified, all records in the
file are read serially and processed by the
statements within the READ loop.

 When an end of file condition is encountered by the
READ statement, control is passed to the next
statement after the corresponding ENDREAD
statement.

 Field names inside the FOR condition or the body of
a READ loop are accessed using the syntax:
read-tag.field-name. Field names may be
abbreviated to simply field-name in the FOR
condition or the body of the active READ statement.

 Warehouse attempts to optimize condition to
achieve maximum performance. For example,
when reading an IMAGE dataset Warehouse
performs a keyed read whenever possible.

 When the condition or part of the condition
contains variables or fields not in the record being
read, Warehouse may terminate the read loop
when the condition is FALSE. This is known as a
“shortened read” and is done to optimize
performance. For example, the statement

Warehouse Statements READ

 Chapter Three 73

 READ R = DB.FILE FOR COUNTER <= 100

where COUNTER is a Warehouse variable,
terminates as soon as an end of file is reached or
COUNTER is greater than 100. Once COUNTER is
greater than 100, Warehouse recognizes that
reading more records will not make the condition
true, so the read loop is terminated.

Examples Example 1

OPEN ORDDB IMAGE ORDER.DB PASS=; MODE=1
CREATE TAPE ARCHIVE ORDTAPE
READ ORDERS = ORDDB.ORDERS &
 FOR CMPL = "Y" AND ORDER-NO > 1000

 This example reads the ORDERS dataset in the
ORDDB database looking for matches on the items
CMPL and ORDER-NO. Any records which have a
value of Y in the CMPL field and an ORDER-NO
greater than 1000 are processed by statements
following the READ statement and before the
ENDREAD statement.

 Example 2

OPEN CUST ARCHIVE CUSTFILE
OPEN TEST ALLBASE TESTDBE
READ C = CUST.CUSTOMER
 COPY C TO TEST.TESTDB.CUSTS
ENDREAD

 This example reads all records in the CUSTOMER file
from the archive file CUSTFILE and copies them to
the TESTDB.CUSTS table in the ALLBASE
database TESTDBE.

 Example 3

OPEN CUSTDB IMAGE CUSTDB.DATABASE
READ CUST = CUSTDB.CUST-M &
 FOR STR(CUSTOMER,1,6) = "123456"

 This example reads the CUST-M dataset in the

READ Warehouse Statements

74 Chapter Three

CUSTDB database and selects every record where
the first six characters of the CUSTOMER data item
are 123456. Notice that all functions and
operations are supported by the READ statement.
For more information on functions, see Chapter
Five, Expressions.

 Example 4

OPEN PROD IMAGE PRODDB &
 PASS=READER MODE=5
OPEN TEST IMAGE TESTDB &
 PASS=WRITER MODE=3
DEFINE NUM : I2
SETVAR NUM = 1
READ M = PROD.MASTER-SET FOR NUM <= 100
 COPY M TO TEST.MASTER-SET
 SETVAR NUM = NUM + 1
ENDREAD

 This example opens the IMAGE database PRODDB
using a password of READER and an open mode of 5
for read-only access and opens the database
TESTDB using a password of WRITER and an open
mode of 3 for exclusive access. A record counter
NUM is defined to count the records as they are
read. The dataset MASTER-SET from the database
PROD is read serially as long as counter NUM is less
than or equal to 100. This limits the selection to
100 MASTER-SET records. The selected MASTER-
SET records are then copied to the test database
and the counter variable NUM is incremented by 1.

 Example 5

This example is a little more complex and
demonstrates nested READ statements with
conditions, key matches, and ordering.

The input database has the following structure:

Table: OFFER_Q
Columns: CHANGE_ID, STATUS_NOW,

TABLE_NAME
Table: OFFERS_CL

Warehouse Statements READ

 Chapter Three 75

Columns: CHANGE_ID, OFFER_NO, TYPE

The output database has the following structure:

Table: TBL_2_UPD
Columns: CHG_LOG_ID, ACTION_CD,

OFFER_NO, TYPE_, etc.

We would like to read the input database OFFER_Q
looking for transactions that match a specific
condition. When found, we want to read their
corresponding entries on the OFFERS_CL table.
Then using information on the OFFERS_CL table,
make updates to the output database's TBL_2_UPD
matching column names.

Step 1 OPEN InDB REMOTE BOX1 USER=## PASS=## &
 ODBC MyODBC1 USER=## PASS=##

Step 2 OPEN OutDB BOX2 USER=## PASS=## &
 ODBC MyODBC2 USER=## PASS=##

Step 3 READ InDB_QR = InDB.{dbo}.OFFER_Q &
 FOR STATUS_NOW = "NEW" &
 ORDER BY CHANGE_ID

Step 4 IF TABLE_NAME = "dbo.OFFERS"

Step 5 READ InDB_CLR = InDB.{dbo}.OFFERS_CL
 FOR CHANGE_ID = InDB_QR.CHANGE_ID

Step 6 IF InDB_QR.CHANGE_TYPE = "U"

Step 7 READ OutDB_R = &
 OutDB.{dbo}.TBL_2_UPD &
 FOR SLOTID = InDB_CLR.SLOTID

Step 8 UPDATE OutDB_R SET &
 CHG_LOG_ID = 0, &
 ACTION_CD = "UPD", &
 OFFER_NO =
 InDB_CLR.U_OFFERNO, &
 TYPE_ =
 InDB_CLR.U_TYPE, &
 (more assignments go here)

Step 9 ENDREAD
 ELSE IF InDB_QR.CHANGE_TYPE = "#"
 . . .

READ Warehouse Statements

76 Chapter Three

 ENDIF
 ENDREAD
 ELSE IF TABLE_NAME = "####"
 . . .
 ENDIF
ENDREAD

 Step1: We have an ODBC connection called
MyODBC1 that points to a remote database on BOX1.
We are going to refer to this database in the script
as InDB.

 Step 2: We have an ODBC connection called
MyODBC2 that points to a local database on BOX2.
We are going to refer to this database in the script
as OutDB. Because this is a local connection, we
can assume that this script is running locally on
BOX2.

 Step 3: Start a READ loop called InDB_QR that
points to a table on InDB called OFFER_Q. We only
want to pull rows from that table that have NEW in
the column STATUS_NOW. The matching records
will be sorted by CHANGE_ID.

 Step 4: Using the above set of returned records, we
want to process only records that have
dbo.OFFERS in the column TABLE_NAME through
the next block of code.

 Step 5: Start another READ loop called InDB_CLR
that points to a table on InDB called OFFERS_CL.
We only want to pull rows from that table where
the CHANGE_ID entry matches the CHANGE_ID on
the InDB_QR READ loop.

 Step 6: If the CHANGE_TYPE column on the
InDB_QR contains a U then process updates to the
output table.

 Step 7: Start another READ loop called OutDB_R
that points to a table on OutDB called TBL_2_UPD.
We only want to pull rows for updating from the
output table where the SLOTID entry matches the

Warehouse Statements READ

 Chapter Three 77

SLOTID on the InDB_CLR READ loop.

 Step 8: Update the records on the OutDB_R READ
loop by changing their column entries using data
from the InDB_QR READ entries.

 Step 9: Terminate the READ loops, and the IF
statements. Other tests would be made here for
additional CHANGE_TYPE entries like inserts, or
deletes, and for additional TABLE_NAME values.

RETURN Warehouse Statements

78 Chapter Three

RETURN Returns from a User-Defined Function.

 The RETURN statement exits from a user-defined
function, and may return a value to the calling
expression.

Syntax RETURN [return-value]

 return-value is an expression representing the
value returned to the calling expression.

Considerations If the function definition specifies a return-type,
the RETURN statement is required to return a value
and it is an error to reach the ENDFUNCTION
statement without returning a value.

 If the function definition does not specify a
return-type, the ENDFUNCTION statement may
be used to exit the function. Without a return-
type in the function definition, the RETURN
statement may not return a value.

Examples Example 1

FUNCTION CHKDATE(DT : X6) : X6
 IF DT = " " THEN
 RETURN "890101"
 ELSE
 RETURN DT
 ENDIF
ENDFUNCTION

 The function CHKDATE takes an IMAGE X6 item as
a parameter called DT and returns an IMAGE X6
item. If DT is all spaces, 890101 is returned,
otherwise DT is returned.

 Example 2

FUNCTION CHKDATE(VAR DT : X6)
 IF DT <> " " THEN
 RETURN
 ENDIF
 SETVAR DT = "890101"
ENDFUNCTION

Warehouse Statements RETURN

 Chapter Three 79

 The function CHKDATE takes an IMAGE X6 item as
a parameter called DT. The VAR keyword indicates
DT is passed by reference. If DT is not all spaces,
the function immediately returns. Otherwise DT is
set to 890101 and the function returns
automatically at the ENDFUNCTION statement.

ROLLBACK Warehouse Statements

80 Chapter Three

ROLLBACK Causes a transaction Rollback.

 The ROLLBACK statement causes a Warehouse
rollback operation. The ROLLBACK statement
causes all databases supporting rollback that have
been accessed during the transaction to be rolled
back to the state when the transaction started.

Syntax ROLLBACK

Considerations In a typical script the ROLLBACK statement is
unnecessary. The ROLLBACK statement is only
provided for sophisticated transaction management
and may cause problems if used inappropriately.

The ROLLBACK statement performs a rollback
operation on all databases accessed by the script
since the previous commit operation. There is no
way to rollback a single database.

The effect of a ROLLBACK statement depends on the
type of database accessed. The effect is as follows
for each database type:

 ALLBASE Performs database rollback
ARCHIVE No effect
CSV No effect
DB2 Performs database rollback
FIXED No effect, unless MPE/iX message

file opened with NDR, in which case
most recent record read is
preserved for next read.

IMAGE Calls DBXUNDO if locking is
ROLLBACK.

ODBC Performs database rollback
ORACLE Performs database rollback
REMOTE Depends on underlying database
REPORT No effect
TEXT No effect

Examples Example 1

OPEN RI &
 REMOTE MPESYS USER=MGR.DBMGR &

Warehouse Statements ROLLBACK

 Chapter Three 81

 IMAGE IMGDB PASS=IMPASS MODE=5
OPEN LO ORACLE SCOTT/TIGER

READ CUST = RI.CUSTOMERS
 TRY
 COPY CUST TO LO.CUSTOMERS
 READ CT = RI.CUST-TRANS &
 CUSTNO = CUST.CUSTNO
 COPY CT TO LO.CUST_TRANS
 ENDREAD
 RECOVER
 * Rollback CUSTOMERS record and
 * any CUST_TRANS records
 ROLLBACK
 ENDTRY
ENDREAD

 This example opens a remote Image database
IMGDB on the MPE/iX system MPESYS. It then
opens a local Oracle database. The CUSTOMERS
dataset is read from the remote Image database. A
TRY statement is used to catch any errors
encountered while copying records to the local
Oracle database. The CUSTOMER record is copied
and matching CUST-TRANS records are read from
the Image database and copied to the Oracle
database. If an error occurs while copying, the
RECOVER block is executed which causes the
CUSTOMER and CUST_TRANS records to be rolled
back out of the local Oracle database. Also see
Chapter 4 Image Files Types: Set Locking.

SET Warehouse Statements

82 Chapter Three

SET Sets system and database options.

 The SET statement establishes values for system
and database options.

Syntax SET global-option value

 or

SET db-tag db-option value

 global-option specifies the name of the global
option to be changed. global-option must be
one of:

 AUTOPAD Automatically pads fixed
length strings

COMMITRATE Sets frequency of commits
MSGS Sets display of conversion

messages
PAGELENGTH Sets report page length
PAGEWIDTH Sets report page width
PRINTNULL Changes value displayed

when a null value is printed
PROGRESS Sets display of progress

messages
START Sets START option for XEQ

files
STATS Sets statistics printing

option

 value is the new value of the option. Global option
values are as follows:

 AUTOPAD Setting AUTOPAD ON causes
trailing spaces to be retained
when operating with fixed
length character strings.
When AUTOPAD is OFF, the
default, trailing spaces are
stripped from fixed length
character strings. (The PAD
function may be used to
retain the spaces.)

Warehouse Statements SET

 Chapter Three 83

 COMMITRATE value must be an integer

greater than or equal to 0.
The default value of
COMMITRATE is 1. Sets the
frequency with which
Warehouse does a commit to
the databases. By default,
Warehouse does a “commit”
after every "transaction."
Setting the COMMITRATE to
value causes Warehouse to
do a commit after every
value transactions.

 Setting the value of

COMMITRATE to values
greater than 1 usually
increases performance but
may require additional
database log file storage.

 Setting the value of

COMMITRATE to 0 causes
automatic commits to be
suppressed. When the
commit rate is 0, Warehouse
only does a commit when a
COMMIT statement is
encountered and at the
successful completion of the
script.

 A "transaction" is defined as

one record selected from the
outermost READ statement.

 MSGS value must be either OFF or
ON. If set to OFF, no
messages are displayed for
data type conversions during
record assignment. If set to
ON, the default, Warehouse

SET Warehouse Statements

84 Chapter Three

indicates missing fields and
data type conversions for
COPY statements and record
assignments using SETVAR.

 PAGELENGTH value must be an integer

value greater than or equal
to 0. A PAGELENGTH of 0
disables page breaks
between pages. The default
PAGELENGTH is 55.

 PAGEWIDTH value must be an integer

value greater than 0. The
default PAGEWIDTH is 80.

 PRINTNULL changes the value displayed

when a null value is printed.
The syntax is:

 SET PRINTNULL "<null-

print-value>"

 <null-print-value> is

the string displayed when a
null is printed with the
PRINT statement. By
default, the value is $NULL.
Example:

 SET PRINTNULL "(null)"
 DEFINE S1, S2 : ORACLE

 VARCHAR2(10) ALLOW
 NULLS

 SETVAR S1 = "Taurus"
 PRINT S1, S2, S1 || S2
 GO
 Taurus (null) (null)

 PROGRESS value must be an integer

greater than 0. Sets the
frequency in seconds with
which Warehouse displays
progress messages during
script execution. When

Warehouse Statements SET

 Chapter Three 85

progress messages are
enabled, Warehouse displays
the number of records read,
written (copied), updated
and deleted every value
seconds. The default value
of PROGRESS is 0, indicating
progress messages are not to
be displayed.

 START value must be either OFF or

ON. If set to OFF, the
default, Warehouse displays
each line from an XEQ file as
it is processed. If set to ON,
lines from an XEQ file are
not displayed, like when
using the START statement.
Display of lines can also be
suppressed by running
Warehouse with the -start
option.

 STATS value must be either OFF or

ON. If set to ON, the default,
statistics about the access of
each file or table are
displayed after processing
the script is complete. If set
to OFF, no statistics are
displayed. Stats can also be
suppressed by running
Warehouse with the
-nostats option.

 db-tag specifies the database tag to which the SET

statement is to apply.

 ARRAYIFY Interprets adjacent,
consecutively-numbered
columns of the same type to
be accessed with array logic.

DEFER Delays database writes.
CHARSET Assigns a character set to a

SET Warehouse Statements

86 Chapter Three

database.
LABELS Reports column labels on

DB2/400 systems. Typically
accessed only through
DataBridger Studio.

RECNUMS Controls the addition of a
virtual column named
$RECNUM to be appended to
each record in an IMAGE
database. The column holds
the record number.

SHOWSQL Controls the display of
generated SQL DML for the
database.

 value is the new value of the option. db-tag values

are as follows:

 ARRAYIFY value must be either OFF or
ON. SQL (Oracle and ODBC)
table layouts may now be
interpreted to contain
arrays. SET ARRAYIFY
must be issued after the
OPEN and before any other
statements access the
database.

 DEFER value must be either OFF or

ON. Causes database writes
to be deferred.

 CHARSET value must be a valid

character set name enclosed
in double quotes. When a
database is assigned a
character set, all character
items from the database will
be interpreted as belonging
to the specified character
set.

 The syntax is: SET db-tag

CHARSET “charset-name”.

Warehouse Statements SET

 Chapter Three 87

The character set name,
charset-name, must be
enclosed in quotation marks.

 SET CHARSET must be

issued after the OPEN but
before any other
statements access the
database.

 LABELS value must be ON, OFF, or

EBCDIC. ON causes
Warehouse to retrieve
column labels for each table.
OFF causes Warehouse not
to retrieve column labels.
EBCDIC retrieves labels and
translates them from
EBCDIC to ASCII.

 RECNUMS value must be ON or OFF.

When enabled, a virtual
column named $RECNUM is
appended to each IMAGE
database record. This record
number may be used to read
a record by referring to
$RECNUM. SET activates
record number access for the
entire database, and must be
specified after the related
OPEN statement. To enable
record number access just
within the context of a given
READ statement, see
Chapter Four, IMAGE File
Types: Read.

 SHOWSQL value must be ON or OFF.

When enabled, tells the
Warehouse Client to display
the SQL DML generated on
behalf of a Warehouse I/O
operation.

SET Warehouse Statements

88 Chapter Three

Considerations db-option specifies the name of the file option to

be changed. db-option is specific to the file type.
See Chapter Four, File Types, for what values are
permitted for each file type.

Examples The SET statement is executed immediately and is
not executed as part of running the script.

 Example 1

SET PAGELENGTH 55

Sets the page length to 55 lines, which causes a
page break to be printed after every 55 print lines.

 Example 2

OPEN TDB IMAGE TESTDB PASS=MYPASS MODE=3
SET TDB DEFER ON

This example opens the IMAGE database TESTDB
using a database tag of TDB, a password of MYPASS
and an open mode of 3, for exclusive access. The
SET statement is used to turn DEFER mode on,
causing database writes to be deferred by IMAGE.

 Example 3

SET AUTOPAD ON
DEFINE C1 : CHAR(8)
DEFINE C2 : SQL CHAR(6)
SETVAR C1 = "CHAR1"
SETVAR C2 = "C2"
PRINT LEN(C1)
PRINT LEN(C2)
PRINT C1 || C2
GO
8
6
CHAR1 C2

Setting AUTOPAD ON in this example causes
operations with the fixed length characters strings
C1 and C2 to retain their trailing spaces. If
AUTOPAD was off, the script would have printed 5,

Warehouse Statements SET

 Chapter Three 89

2, and CHAR1C2.

 Example 4

OPEN TDB IMAGE TESTDB PASS=MYPASS MODE=3
OPEN ODB REMOTE UNXSYS &
 USER=REMUSR PASS=REMPAS &
 ORACLE SCOTT/TIGER &
 SID=ORADB HOME=/users/home/ora
SET COMMITRATE 400
READ OM = TDB.ORDERS FOR STAT = "CLX"
 COPY OM TO ODB.ORDERS
 READ OL = TDB.ORD-LINES &
 FOR ORDNO = OM.ORDNO
 COPY OL TO ODB.ORD_LINES
 ENDREAD
ENDREAD

This example opens a local IMAGE database
TESTDB. A remote Oracle database on the system
UNXSYS is also opened. A SET statement is used to
set the commit rate to 400. This causes Warehouse
to do a commit after every 400 outermost READ
statements have executed. In this case 400 ORDERS
records and their associated ORD-LINES records
are read from the IMAGE database and copied to
the remote Oracle database between commits.

 Example 5

OPEN TDB IMAGE TESTDB PASS=MYPASS MODE=3
OPER ODB REMOTE UNXSYS &
 USER=REMUSR PASS=REMPAS &
 ORACLE SCOTT/TIGER &
 SID=ORADB HOME=/users/home/ora
SET COMMITRATE 400
SET PROGRESS 30
READ OM = TDB.ORDERS FOR STAT = "CLX"
 COPY OM TO ODB.ORDERS
 READ OL = TDB.ORD-LINES &
 FOR ORDNO = OM.ORDNO
 COPY OL TO ODB.ORD_LINES
 ENDREAD
ENDREAD
GO
10:21:33 Read: 3076 Write: 3075 Upd: 0 Del: 0
10:22:04 Read: 6212 Write: 6211 Upd: 0 Del: 0

SET Warehouse Statements

90 Chapter Three

This is the same as example 4, except that a SET
PROGRESS 30 statement has been added. After the
GO statement progress messages are displayed as
Warehouse processes the records.

 Example 6

Given an input table with the following
successively numbered columns:

DIVNM : CHAR(50)
QTR_[01] : ODBC DECIMAL(16,2)
QTR_[02] : ODBC DECIMAL(16,2)
QTR_[03] : ODBC DECIMAL(16,2)
QTR_[04] : ODBC DECIMAL(16,2)

Warehouse can be used to access the columns using
array logic. With ARRAYIFY the columns become
internally defined as:

QTR_ : ARRAY[1..4] OF ODBC DECIMAL(16,2)

The following logic will access them as an array:

OPEN SRCDB ODBC MYFINANCIAL
SET SRCDB ARRAYIFY ON

DEFINE IX : ODBC NUMERIC

READ R = SRCDB.FINHIST
 PRINT "Division Name:", DIVNM
 SETVAR IX = 1

 WHILE IX <= 4
 PRINT "QTR ", IX, "=", QTR_[IX]
 SETVAR IX = IX + 1
 ENDWHILE

ENDREAD

This script opens an ODBC data source called
MYFINANCIAL, and turns on ARRAYIFY. A counter
named IX is defined and will be used to loop
through the array of quarters. As records are read,
the name is printed, then a WHILE loop is used to
access all four columns and print their contents.

Warehouse Statements SET

 Chapter Three 91

 Example 7

SET PRINTNULL "(null)"
DEFINE S1, S2 : ORACLE VARCHAR2(10)

ALLOW NULLS
SETVAR S1 = "Taurus"
PRINT S1, S2, S1 || S2
GO
Taurus (null) (null)

 S2 is allowed to have no value because of the
ALLOW NULLS on the DEFINE statement. Normally
when printed, it would display nothing, but the use
of the PRINTNULL command forces Warehouse to
display the provided value.

 Example 8

OPEN SRCDB IMAGE ...
SET SRCDB CHARSET "ANSI_X3.4-1968"

This example opens an IMAGE data source with the
name SRCDB, then assigns the extended character
set "ANSI X3.4-1968" to the data source.

SET CHARSET must be issued after the OPEN but
BEFORE any other statements access the
database.

SETVAR Warehouse Statements

92 Chapter Three

SETVAR Sets the value of a variable.

 The SETVAR statement assigns the result of an
expression to a variable.

Syntax SETVAR var-name = expression

 var-name specifies the name of the variable. This
variable must have been previously defined with
the DEFINE statement.

 expression is the new value of var-name. For
more information on expressions, see Chapter Five,
Expressions.

Considerations The variable referenced by var-name must have
been previously defined using the DEFINE
statement.

Warehouse attempts to store expression into
var-name regardless of the data types involved.
This may require a conversion that results in an
error. For example, it is legal to use SETVAR to
store a string into a number, but the string must
contain a value that can be converted, e.g. "-5.62"
can be converted without error, but "PN352"
cannot.

Examples Example 1

DEFINE NUMFOUND : I2
SETVAR NUMFOUND = 0

This example defines a new variable NUMFOUND as
a four byte integer. The next statement initializes
NUMFOUND to the value 0.

 Example 2

SETVAR CUST.COUNTRY = "USA"

This example sets value of the field COUNTRY
within the record CUST to USA.

Warehouse Statements SETVAR

 Chapter Three 93

 Example 3

SETVAR RUNTOT[1] = MTD[1]
SETVAR IX = 2
WHILE IX <= 12
 SETVAR RUNTOT[IX]= &
 RUNTOT[IX - 1]+ MTD[IX]
 SETVAR IX = IX + 1
ENDWHILE

This example calculates an array of running totals
into RUNTOT. The running totals are calculated
from the MTD array by setting the first element of
RUNTOT equal to the first element of MTD. A WHILE
loop is then used with an index variable IX to
calculate each successive element of RUNTOT by
adding the previous RUNTOT with the current MTD
indexed by IX.

SHOW Warehouse Statements

94 Chapter Three

SHOW Displays specific information.

 The SHOW statement displays information about an
object or about global options.

Syntax SHOW

 or

SHOW db-tag [table-name || DRIVER ||

[xml-table [ELEMENTS] [TABLES]
[DTD]]]

 or

SHOW var-name

 or

SHOW fmt-name

 db-tag specifies the database tag of the database
or file for which the options are to be shown.

 table-name specifies the name of a table within
the database specified by db-tag. When table-
name is specified, all fields (columns) within the
specified table are displayed along with their data
type.

 DRIVER displays driver information about the
ODBC database specified by db-tag.

 xml-table Displays the layout of "table" within
the XML file.

 ELEMENTS Displays the elements (columns) within
the XML file.

 TABLES Displays the "tables" within the XML file.

 DTD Displays the XML DTD for the file.

 var-name specifies the name of a variable to be
described. The variable must have been previously
defined with the DEFINE statement. If var-name

Warehouse Statements SHOW

 Chapter Three 95

is a record, all fields within var-name are
displayed along with their data type.

 fmt-name specifies the name of a format to be
described. The variable must have been previously
defined with the FORMAT statement. If fmt-name
is a record, all fields within fmt-name are
displayed along with their data type.

Considerations The SHOW statement is executed immediately and is
not executed as part of running the script.

 If no parameters are given to SHOW, all global
options are shown including the Warehouse version
number.

 The SHOW statement is used to display information
about a specific item. The LIST statement may be
used to obtain a list of items that may be shown.

Examples Example 1

SHOW

AUTOPAD : OFF
COMMITRATE : 1
MSGS : ON
PAGELENGTH : 55
PAGEWIDTH : 80
PROGRESS : 30
START : OFF
STATS : ON
VERSION : Warehouse 3.02.6020-W - Oct 2 2008 10:21:07
PRINTNULL : “$NULL”

Shows the global options.

 Example 2

OPEN TDB IMAGE TESTDB PASS=MYPASS MODE=3
SHOW TDB COMPANY

 Dataset Name Type Entries Capacity
 COMPANY D 6415 8000

 Dataitem Name Type
 COMPANY-KEY X8 Search item
 MAJOR-COMPANY X6
 COMPANY-NAME X40

SHOW Warehouse Statements

96 Chapter Three

 .
 .
 .

This example opens the IMAGE database TESTDB
using a database tag of TDB, a password of MYPASS
and an open mode of 3. The SHOW statement is
used to display the layout of the dataset (table)
COMPANY within TESTDB.

 Example 3

DEFINE TOTAL : INTEGER
SHOW TOTAL

Variable definition for TOTAL:

 INTEGER

This example defines the variable TOTAL as an
integer. The SHOW statement is used to display the
data type of TOTAL.

Example 4

OPEN MYDB ODBC MSACCESSDB
SHOW MYDB DRIVER

Displays the following driver information for the
MS Access database named MYDB

SQL_DBMS_NAME = ACCESS
SQL_DRIVER_NAME = odbcjt32.dll
Driver conformance level = Level 1
SQL conformance level = Minimum

Warehouse Statements START

 Chapter Three 97

START Executes the contents of a command file.

 The START command reads subsequent input from
a file rather than from standard input. The
statements are not displayed as they are processed.

Syntax START file-name

 file-name is the name of the file containing

Warehouse statements to be executed. Subsequent
Warehouse statements are read from file-name
until an end of file condition is reached.

Considerations The XEQ and START commands both read and

process statements from a file. The difference is
that the XEQ statement displays the statements as
they are processed, but the START command does
not.

 START statements may be nested. XEQ statements
within a file processed by START do not display
lines.

 A file may be “started” from the command line by
running Warehouse with the -start option.

Examples Example 1

The following FORMAT statement is entered into a
file called COFMT.

 FORMAT CO-FMT
 CO-NAME : X32
 CO-ADDR-1 : X32
 CO-ADDR-2 : X32
 CO-CITY : X32
 CO-ST-ZIP : X32
END

The FORMAT statement may be accessed using the
START statement as in the following script:

 OPEN F FIXED COFILE
START COFMT

START Warehouse Statements

98 Chapter Three

READ C = F FORMAT CO-FMT &
 ORDER-BY CO-NAME
 PRINT CO-NAME, CO-CITY
ENDREAD

Warehouse Statements TRY

 Chapter Three 99

TRY Defines the beginning of a TRY recovery
block.

 The TRY statement defines the beginning of a try
and recovery block.

Syntax TRY
 try-statement-list
RECOVER
 recover-statement-list
ENDTRY

 or

 TRY

 try-statement-list
ENDTRY

 try-statement-list is a list of Warehouse
statements that are executed as normal, except
that if an error occurs control immediately
transfers to the statements after the RECOVER
statement. If no error occurs while executing the
try-statement-list, the recover-statement-
list is skipped and control transfers to the next
statement after the ENDTRY statement.

 recover-statement-list is a list of Warehouse
statements that are executed only in the event of
an error in the try-statement-list.

Considerations If there is no RECOVER statement, an error causes
control to be transferred to the next statement after
the ENDTRY statement.

 TRY/RECOVER blocks may be nested to provide
several layers of recovery.

 The ESCAPE statement may be used to generate an
error condition that can be trapped by a
TRY/RECOVER block.

 If an error occurs and there is no TRY statement in
the script, or if the error occurs outside the control
of a TRY statement, Warehouse displays an error

TRY Warehouse Statements

100 Chapter Three

message on stderr and script execution
terminates. In this case the Warehouse program
exits with an exit condition of 1 indicating an error.
(On MPE/ix, the job control word JCW is set to
FATAL.)

Examples Example 1

OPEN CDB &
 REMOTE GIRAFFE &
 USER=ouser pass=opass &
 ORACLE SCOTT/TIGER &
 HOME=/u01/oradata/ora &
 SID=ora
DEFINE TOTAL : ORACLE NUMBER
TRY
 READ C = CDB.CUSTOMERS FOR STAT = "I"
 SETVAR TOTAL = 0
 READ T = CDB.CUST_TRANS &
 FOR CUST_NO = C.CUST_NO
 SETVAR TOTAL = TOTAL + AMT
 ENDREAD
 TRY
 UPDATE C SET TOT_AMT = TOTAL
 RECOVER
 PRINT "**Error updating", cust_no
 ENDTRY
 ENDREAD // CDB.CUSTOMERS
RECOVER
 ESCAPE "**** Error during script ****"
ENDTRY

This example opens a remote Oracle database on
the system GIRAFFE. A work variable TOTAL is
defined and a TRY statement is entered that
encompasses the major portion of the script.
If an unrecovered error occurs during processing of
the statements after the TRY, control immediately
transfers to the corresponding RECOVER
statements, which in this case is a single ESCAPE
statement. Notice there is another TRY statement
before the UPDATE statement. If an error occurs
during the UPDATE statement, a separate RECOVER
causes the customer number to be displayed, but
the script continues processing more records.

Warehouse Statements UPDATE

 Chapter Three 101

UPDATE Updates the current record.

 The UPDATE statement is used to change the
current record from a file that was read with a
READ statement.

Syntax UPDATE read-tag SET field-name = value
 [, field-name = value] [, ...]

 read-tag is the name of an active read tag
created with the READ statement. See the READ
statement in this chapter for information on read
tags.

 field-name is the name of the field within the
record to be updated.

 value is any valid expression. For more
information on expressions, see Chapter Five,
Expressions.

Considerations The UPDATE statement may only be used on files
that support record update. For more information,
see Chapter Four, File Types.

Examples Example 1

OPEN CDB IMAGE CUSTDB.DATABASE
CREATE ARCFIL ARCHIVE CUSTARCH
READ C = CDB.CUSTOMERS FOR STATUS = "I"
 READ T = CDB.CUST-TRANS &
 FOR CUST-NO = C.CUST-NO
 COPY T TO ARCFIL.CUST-TRANS
 DELETE T
 ENDREAD
 UPDATE C SET &
 STATUS = "ARCHIVED", &
 COUNT = 0
ENDREAD // End of READ CDB.CUSTOMERS

This example copies and deletes CUST-TRANS
records, then updates the data items STATUS to
ARCHIVED and COUNT to zero. Notice the //
indicating a comment on the ENDREAD statement

WHILE Warehouse Statements

102 Chapter Three

WHILE Defines the beginning of a WHILE loop.

 The WHILE statement defines the beginning of a
while loop.

Syntax WHILE condition [DO]
 statement-list
ENDWHILE

condition specifies a Boolean expression to be
evaluated. It may be any Boolean expression
containing arithmetic and string operators. The
statement-list is executed repeatedly in a loop
as long as condition is TRUE. As soon as
condition is FALSE, control transfers to the
statement following the ENDWHILE. If condition
is FALSE upon entry to the loop, control transfers
directly to the statement after the ENDWHILE
without executing statement-list. For more
information on Boolean expressions, see Chapter
Five, Expressions.

 statement-list is a list of Warehouse
statements that may include other WHILE
statements.

Examples Example 1

SETVAR IX = 1
WHILE IX <= LEN(BUF)
 IF STR(BUF, IX, 1) = '*'
 SETVAR BUF = &
 STR(BUF, 1, IX - 1) || " " || &
 STR(BUF, IX + 1, LEN(BUF) - IX)
 ENDIF
 SETVAR IX = IX + 1
ENDWHILE

This example steps through the string BUF and
converts every * to a blank.

Warehouse Statements XEQ

 Chapter Three 103

XEQ Executes the contents of a command file.

 The XEQ command reads subsequent input from a
file rather than from standard input. Statements
are displayed as they are processed.

Syntax XEQ file-name

 file-name is the name of the command file to be

executed. Subsequent Warehouse statements are
read from file-name until an end of file condition
is reached.

Considerations XEQ statements may be nested within XEQ files.

 An XEQ statement is executed automatically by

Warehouse if a file name is included as a
parameter when Warehouse is run. In that case,
Warehouse automatically executes the file name,
and does an automatic GO at the end of the script
file.

 The XEQ and START commands both read and
process statements from a file. The difference is
that the XEQ statement displays the statements as
they are processed, but the START command does
not.

 If an XEQ statement is done within a file that had
been previously STARTed or if the START option is
ON, then lines from file are not displayed as they
are processed.

Examples Example 1

The following FORMAT statement is entered into a
file called COFMT.

 FORMAT CO-FMT
 CO-NAME : X32 // Company name
 CO-ADDR-1 : X32 // Address line 1
 CO-ADDR-2 : X32 // Address line 2
 CO-CITY : X32 // City
 CO-ST-ZIP : X32 // Zip code

XEQ Warehouse Statements

104 Chapter Three

END // End of CO-FMT

The FORMAT statement may be accessed using the
XEQ statement as in the following script:

 OPEN F FIXED COFILE
XEQ COFMT
READ C = F FORMAT CO-FMT &
 ORDER-BY CO-NAME
 PRINT CO-NAME, CO-CITY
ENDREAD

Warehouse Statements !

 Chapter Three 105

! Executes a system command.

 The ! statement passes what follows after the ! to
the operating system as a command to be
immediately executed. A colon (:) may be used
instead of the exclamation point (!).

Syntax ! command

 or

: command

 command is the system-dependent command to be
executed.

Considerations The ! statement is completely operating system
dependent and may function differently in different
operating environments.

 The ! statement is different from the SYSTEM
function in that the ! statement is executed
immediately, but the SYSTEM function is always
executed as part of script execution.

 The : statement is identical in function to the !
statement.

Examples Example 1

! LISTFILE A@,2

Immediately executes a LISTFILE command on the
MPE/iX operating system. LISTFILE will probably
result in an error if executed on a operating system
other than MPE/iX.

Example 2
! DIR A:*.*

Executes a DIR command.

* Warehouse Statements

106 Chapter Three

* Designates a comment.

 The * statement instructs Warehouse to ignore
the text after the asterisk. This statement is used
to add comments to the script.

Considerations The * only indicates a comment when it is the
first non-blank character on a line.

Comments may also be placed at the end of a
statement by using two slashes (//) to denote the
end of the line and beginning of the comment.

Examples * This is a comment line.

Warehouse ignores the text after the *.

File Types

 Chapter Four 107

Chapter Four

File Types

 File Types

108 Chapter Four

Chapter Overview This chapter describes in detail each of the
database systems and file types supported by
Warehouse. For each database, all relevant
Warehouse statements and how they interact with
the particular database are discussed.

File Types ALLBASE

 Chapter Four 109

ALLBASE Allbase file access

This section describes the considerations for each
Warehouse statement that accesses an Allbase
database.

Allbase is a database from Hewlett-Packard that
runs on HP3000 MPE/iX based machines.

COPY...TO Records may only be copied to an Allbase table or
updateable view.

 Examples Example 1

OPEN ARCH ARCHIVE ARCFIL
OPEN PROD ALLBASE PRODDBE
READ ORDS = ARCH.ORDS FOR DATE = 920222
 COPY ORDS TO PROD.ORDDB.ORDS
 READ LINES = ARCH.ORD-LINES &
 FOR ORDNO = ORDS.ORDNO
 COPY LINES TO PROD.ORDDB.ORD-LINES
 ENDREAD
ENDREAD

 This example opens the archive file ARCFIL, and
opens the Allbase database environment PRODDBE.
All ORDS records with a DATE field equal to 920222
are read from the archive file. The ORDS records
are copied into the table ORDDB.ORDS in PRODDBE.
The associated ORD-LINES records are read from
the archive file and copied into the table
ORDDB.ORD-LINES.

CREATE The CREATE statement is not supported for Allbase
databases.

DELETE The DELETE statement may only be used on a table
or updateable view.

 Examples Example 1

OPEN DBE ALLBASE PDBE

ALLBASE File Types

110 Chapter Four

READ M = DBE.PARTS.MASTER &
 FOR STATUS = "NOTREF"
 DELETE M
ENDREAD

 This example opens the Allbase environment file
PDBE using a database tag of DBE. The table
PARTS.MASTER is read and all parts that have
NOTREF in the STATUS field are selected. All
selected records are then deleted.

OPEN The OPEN statement is used to access an Allbase
database.

 Note: Only one Allbase environment may opened
within a Warehouse script.

Syntax OPEN db-tag ALLBASE env-file-name

 db-tag is the database tag used to reference the

database in the remainder of the script.

 env-file-name is the file name of the Allbase
environment file.

Examples Example 1

OPEN ORD ALLBASE ORDERDBE

This example opens the Allbase environment
ORDERDBE. The database tag ORD is used to
reference this database in the remainder of the
script.

READ The READ statement is used to read records from
Allbase tables and views.

Syntax READ read-tag = db-tag.table-ref
 [FOR condition]
 [ORDER BY order-list]

 table-ref is the name of the table or view
Warehouse is to read. table-ref is one of:

File Types ALLBASE

 Chapter Four 111

 owner.table-name
 owner.view-name
 table-name
 view-name

 When a FOR condition is specified, Warehouse
selects only those records matching condition. If
no FOR condition is specified, all records in the
table or view are selected.

 When ORDER BY is specified, Warehouse orders
(sorts) the selected records as specified by order-
list.

 Examples Example 1

OPEN SALES ALLBASE SALESDBE.PUB.DB
READ M = SALES.CUST.MASTER &
 FOR STATUS = "CLOS" &
 ORDER BY CUST_NAME
 READ D = SALES.CUST.ORDERS &
 FOR CUST_NO = M.CUST_NO
 PRINT CUST_NO, M.CUST_NAME, ORD_AMT
 ENDREAD
ENDREAD

 This example opens the Allbase environment file
SALESDBE.PUB.DB using the database tag SALES.
The customer master table CUST.MASTER is read
selecting the records where the STATUS field has a
value of CLOS. All qualifying records from
CUST.MASTER are ordered in ascending order by
CUST_NAME. For each CUST.MASTER record,
records from the CUST.ORDERS table are read by
CUST_NO. For each record from CUST.ORDERS, the
fields, CUST_NO and ORD_AMT are printed along
with CUST_NAME from the CUST.MASTER table.

UPDATE The UPDATE statement may only be used on a table
or updateable view.

 Examples Example 1

OPEN C ALLBASE CUSTDBE

ALLBASE File Types

112 Chapter Four

CREATE A ARCHIVE ARFILE
READ M = C.DB.MAST FOR DATE <= 921231
 COPY M TO A.DB.MAST
 UPDATE M SET STATUS = "ARCH"
ENDREAD

 This example opens the Allbase environment file
CUSTDBE using the database tag C to access this
database environment in the remainder of the
script. An archive file called ARFILE is created
using the database tag A. The table DB.MAST is
read and records where the DATE field has a value
less than or equal to 921231 are selected. All
qualifying records from DB.MAST are copied to the
archive file and the field STATUS is updated to the
value of ARCH.

File Types ARCHIVE

 Chapter Four 113

ARCHIVE Warehouse archive file access

This section describes the considerations for each
Warehouse statement that accesses a Warehouse
archive file.

 A Warehouse archive file is a serially accessed file
that is similar to a database in that it may contain
records from many different sources in many
different formats. Archive files are platform
independent. Whenever a record is written to an
archive file with the COPY statement, Warehouse
writes the format of the record along with the data.
Records written to an archive file from a database
may subsequently be read from the archive file in
the exact same format as in the original database.

 The important thing to keep in mind when
accessing an archive file is that it is a serial file.
New archive files are created with the CREATE
statement and are written to with the COPY
statement. Existing archive files are opened with
the OPEN statement and may be read with the READ
statement, but may not be changed with the COPY,
DELETE or UPDATE statements.

 The archive file format has been changed since the
original version of Warehouse for MPE/iX.
Warehouse is able to transparently read archive
files created in the original format, but cannot
write archive files in the original format.

COPY...TO When copying a record to an archive file, the
archive file must have been opened with the
CREATE statement.

Syntax COPY record TO db-tag.archive-name
 [FORMAT format-name]

 record is the name of the record containing the
data to be copied to the archive file.

 db-tag is the database tag of the archive file as

ARCHIVE File Types

114 Chapter Four

specified in the CREATE statement.

 archive-name is the name of the destination file
as it is to be recorded in the archive file. The
archive-name may be in the format of db-
name.table-name. When the archive file is
subsequently read, this is the name used in the
READ statement to retrieve the record.

 format-name is the name of a format previously
defined with the FORMAT statement. When
format-name is specified, the record is written to
the archive file with the record format specified.

Examples Example 1

OPEN ORD IMAGE ORDDB PASS=READER MODE=5
CREATE ARCH ARCHIVE ARCHFILE
READ M = ORD.MASTER FOR STAT = "PAID"
 COPY M TO ARCH.ORDDB.MASTER
 READ D = ORD.DETAIL FOR KEY = M.KEY
 COPY D TO ARCH.ORDDB.DETAIL
 ENDREAD
ENDREAD

 This example opens the IMAGE database ORDDB
using a password of READER and an open mode of 5
and creates a new archive file ARCHFILE. The
dataset MASTER from the database ORD is read
selecting records where the STAT field is PAID. The
qualifying MASTER records are then copied to the
ORDDB.MASTER file in the archive file. For each
MASTER record copied, all associated detail records
are read from DETAIL and copied to the
ORDDB.DETAIL file in the archive file.

CREATE The CREATE statement is used to create a new
archive file.

Syntax CREATE db-tag ARCHIVE file-name

 db-tag is the database tag used to reference the
archive file in the remainder of the script.

File Types ARCHIVE

 Chapter Four 115

 file-name is the file name of the archive file to be
created.

 Examples Example 1

CREATE AR ARCHIVE ARFILE

This example creates the Warehouse archive file
ARFILE. The database tag AR is used to access the
archive file in the remainder of the script.

DELETE The DELETE statement is not supported for archive
files.

OPEN The OPEN statement is used to access a previously
created Warehouse archive file.

Syntax OPEN db-tag ARCHIVE file-name

 db-tag is database tag used to reference the
archive file in the remainder of the script.

 file-name is file name of the archive file. The
archive file may have been created by a the CREATE
statement in a previous script, or it may be a
Warehouse 1 archive file created by the older
MPE/iX version of Warehouse.

 Examples Example 1

OPEN ARCF ARCHIVE ARCHFILE

This example opens the Warehouse archive file
ARCHFILE. The database tag ARCF is used to
access the archive file in the remainder of the
script.

READ The READ statement is used to read records from an
archive file. Warehouse can read any record that
was copied to the archive file; however, since
archive files are serial, it is important to read
records in the same order they were written.

ARCHIVE File Types

116 Chapter Four

Syntax READ read-tag = db-tag.archive-name

 [FORMAT format-name]
 [FOR condition]
 [ORDER BY order-list]

 When a FORMAT is specified, format-name
overrides the record definition in the archive file
and uses the field names and types from format
format-name.

 When a FOR condition is specified, Warehouse
selects only the records from the archive file that
match condition.

 When ORDER BY is specified, Warehouse first sorts
the selected records, then processes the records in
the order specified by order-list.

 Examples The following examples show how to read from an
archive file that was created with the following
script:

OPEN ORD IMAGE ORDDB PASS=READER MODE=5
CREATE ARCH ARCHIVE ARCHFILE
* Copy CUST records first
READ F = ORD.CUST FOR STAT = "INACT"
 COPY F TO ARCH.CUST
ENDREAD
* Copy MASTER and DETAIL records
READ M = ORD.MASTER FOR STAT = "PAID"
 COPY M TO ARCH.MASTER
 READ D = ORD.DETAIL FOR ORNO = M.ORNO
 COPY D TO ARCH.DETAIL
 ENDREAD
ENDREAD

 The above script creates an archive file called
ARCHFILE that looks like the following:

 ARCHFILE
 CUST

CUST
CUST
CUST
 .
 .

File Types ARCHIVE

 Chapter Four 117

 .
MASTER
 DETAIL
 DETAIL
MASTER
 DETAIL
 DETAIL
 DETAIL
MASTER
 .
 .
 .

 Example 1

OPEN ARCH ARCHIVE ARCHFILE
* Read CUST records first
READ F = ARCH.CUST
 PRINT CUST-NO, CUST-NAME
ENDREAD
* Read MASTER and DETAIL records
READ M = ARCH.MASTER
 PRINT ORNO, CUST-NO
 READ D = ARCH.DETAIL
 PRINT ITEM-NO, QTY, AMT
 ENDREAD
ENDREAD

 This example opens the archive file ARCHFILE and
first reads and prints information from all CUST
records. The script then reads all MASTER records
and prints the ORNO and CUST-NO fields from the
MASTER record. For each MASTER record all
associated DETAIL records are read, with the
ITEM-NO, QTY, and AMT being printed from the
DETAIL records.

 This script executes successfully because it was
constructed to read the files CUST, MASTER and
DETAIL exactly as they were originally written to
the archive file.

 Example 2

OPEN ARCH ARCHIVE ARCHFILE
* Read MASTER records
READ M = ARCH.MASTER

ARCHIVE File Types

118 Chapter Four

 PRINT ORNO, CUST-NO
ENDREAD

 This example opens the archive file ARCHFILE,
reads all MASTER records, then prints the ORNO and
CUST-NO fields from each MASTER record. The
CUST records and the DETAIL records are ignored
by this script.

 This script executes successfully because the CUST
records and DETAIL records can be safely ignored
as they are encountered while Warehouse reads
serially through the archive file.

 Example 3 (Unsuccessful)

OPEN ARCH ARCHIVE ARCHFILE
* Read MASTER records
READ M = ARCH.MASTER
 PRINT ORNO, CUST-NO
ENDREAD
* Read DETAIL records
READ D = ARCH.DETAIL
 PRINT ITEM-NO, QTY, AMT
ENDREAD

 This example opens the archive file ARCHFILE and
first attempts to read all MASTER records and print
from the MASTER record. It then attempts to read
all the DETAIL records. This script will not
produce the desired results because the DETAIL
records are intermixed with the MASTER records on
the archive file, but this script assumes the DETAIL
records are separate from the MASTER records.

SET There are no special SET options for archive files.

UPDATE The UPDATE statement is not supported for archive
files.

File Types CSV

 Chapter Four 119

CSV CSV (Comma Separated Values) file access

This section describes the considerations for each
Warehouse statement that accesses comma
separated value files.

 The type CSV is used to designate all files that have
delimiter separated values in a text file. The
delimiter is not required to be a comma. When
reading, Warehouse separates all fields by the
delimiter; when writing fields are stripped of
leading and trailing spaces and separated by the
delimiter. Separated values are used commonly to
move data between applications because many
different applications support them.

 CSV files should only be used when reading or
writing character data. When reading or writing
binary data, a FIXED file should probably be used.

COPY...TO Leading and trailing spaces are stripped from each

field before it is written to the CSV file and the
delimiter is used to separate each field. Fields
which contain the delimiter character are
surrounded by quotation marks.

 When copying to a CSV file, the file must have
been opened for write access. This is typically done
with the CREATE statement.

 Examples Example 1

OPEN ARCH ARCHIVE ARCFIL
CREATE ORFIL CSV ORDFILE
READ ORDS = ARCH.ORDS FOR DATE = 920222
 COPY ORDS TO ORFIL
ENDREAD

 This example opens the archive file ARCFIL, and
creates a new CSV file ORDFILE which is given a
database tag ORFIL. All ORDS records from the
archive file with a DATE field equal to 920222 are
read and are then copied into the file ORDFILE.

CREATE The CREATE statement is used to create a new CSV

CSV File Types

120 Chapter Four

file.

Syntax CREATE file-tag CSV file-name
 [MODE=mode]
 [DELIM=delimiter-character]
 [QUOTE=quotation-character]
 [ESCAPE=escape-character]
 [STRIP=strip-character]
 [MAXREC=max-recsize]
 [ALLQUOTED]
 [FIELDNAMES]

 file-tag is the file tag used to reference the file
in the remainder of the script.

 file-name is the file name of the file to be created.

 mode is the mode the file is to be accessed in. The
mode definitions are as follows:

 READ Read access to file.

WRITE Write access to file. ERASE or READ

must be specified with WRITE. (On
MPE systems, WRITE may be
specified without ERASE or READ.)

APPEND Append access to file. WRITE or

ERASE not permitted with APPEND
access.

BINARY File contains BINARY data.

Implementation of this parameter
depends on the operating system.
It is recommended whenever
accessing a file with binary data.

ERASE Erases contents of file prior to

access. If ERASE is specified, file is
not required to already exist. If
erase is not specified, file is
required to already exist.

COMMIT (Windows only.) Contents of the

file buffer are written directly to

File Types CSV

 Chapter Four 121

disk when fflush() is called.

VAR (MPE only) Do not internally buffer

records. Assume each read and
write is consists of one record. This
is necessary to read variable length
records.

EXCLUSIVE (MPE and Warehouse message files

only) Access the file exclusively.

SHARE (MPE only) Access the file in shared

mode.

LOCK (MPE only) Access the file with

locking enabled.

TRANS Access the file in transaction

protected mode. Using TRANS
allows COMMIT and ROLLBACK by
keeping all file changes in memory
buffers until a commit or rollback
is done. A commit writes the
buffers to disk, and a rollback
discards the buffers.

MSG File is message file. On MPE

systems, this is an MPE message
file. On other platforms, this is a
Warehouse message file.

NDR File is an MPE message file to be

read with non-destructive reads.
On MPE, specifying NDR implies
MSG too.

CLIB (MPE only) Use C library instead of

MPE intrinsic calls to access files.

UPDATE (MPE only) Access the file with

update access. Use of UPDATE is
necessary to delete or update KSAM
files.

CSV File Types

122 Chapter Four

 If mode is not specified, the default mode of w for

write access is used.

 delimiter-character is a single character that
specifies how the fields are to be delimited in the
output. If the delimiter is a space, it needs to be
enclosed in quotation marks. The default
delimiter-character is a comma (,).

 quotation-character is a single character that
specifies how fields that contain the delimiter-
character or quote-character are grouped into
a single field. When a field that contains either the
delimiter-character or the quote-character
is written, it is enclosed in the quote-character.
The default quote-character is a double quote
(").

 escape-character determines how the quote-
character is handled in a quoted field. Fields
that contain the quote-character are output
surrounded by the quote-character and each
time the quote-character actually occurs in the
field, it is preceded by the escape-character.
The default escape-character is a double quote
(").

 strip-character indicates a character that is
stripped at the beginning and end of each field.
The default strip-character is a space. To
indicate no characters are stripped, use STRIP="".

 max-recsize indicates the maximum size of
records written to the file. Records longer than
max-recsize characters are truncated. The
default max-recsize is 1024.

 ALLQUOTED indicates that all fields are to be
enclosed in the quotation-character when
output. By default, fields are only enclosed by the
quotation-character if needed.

File Types CSV

 Chapter Four 123

 FIELDNAMES indicates that the first record output
contains a list of field names separated by the
delimiter-character. By default, the field
names are not output to the first record.

 Examples The following examples assume CUST records are
output to the file CUSTFIL. The CUST records are:

 CUSTNO CUSTNAME BALANCE
88425 Big Apple Orchards 449.60
92010 Green, Field , & Summers 1195.32
90028 Dandy Daisy Farm 4402.79
94008 Circle "T" Tractors 24017.08

 Example 1

OPEN DB ORACLE ...
CREATE CF CSV CUSTFIL
READ C = DB.CUST
 COPY C TO CF
ENDREAD

 The CREATE statement results in CUSTFIL that
looks as follows:

 88425,Big Apple Orchards,449.60
92010,"Green, Field , & Summers",1195.32
90028,Dandy Daisy Farm,4402.79
94008,"Circle ""T"" Tractors",24017.08

 Example 2

OPEN DB ORACLE ...
CREATE CF CSV CUSTFIL &
 MODE=READ WRITE ERASE &
 DELIM=; QUOTE="'" FIELDNAMES
READ C = DB.CUST
 COPY C TO CF
ENDREAD

 The CREATE statement results in CUSTFIL that
looks as follows:

 CUSTNO;CUSTNAME;BALANCE
88425;Big Apple Orchards;449.60
92010;'Green, Field , & Summers';1195.32
90028;Dandy Daisy Farm;4402.79
94008;'Circle "T" Tractors';24017.08

CSV File Types

124 Chapter Four

 Example 3

OPEN DB ORACLE ...
CREATE CF CSV CUSTFIL &
 ALLQUOTED ESCAPE=\
READ C = DB.CUST
 COPY C TO CF
ENDREAD

 The CREATE statement results in CUSTFIL that
looks as follows:

 "88425","Big Apple Orchards","449.60"
"92010","Green, Field , & Summers","1195.32"
"90028",Dandy Daisy Farm","4402.79"
"94008","Circle \"T\" Tractors","24017.08"

DELETE The DELETE statement is not supported for CSV
files.

OPEN The OPEN statement is used to access an existing
CSV file.

Syntax OPEN file-tag CSV file-name
 [MODE=mode]
 [DELIM=delimiter-character]
 [QUOTE=quotation-character]
 [ESCAPE=escape-character]
 [STRIP=strip-character]
 [MAXREC=max-recsize]
 [ALLQUOTED]
 [FIELDNAMES]

 file-tag is the file tag used to reference the file
in the remainder of the script.

 file-name is the file name of the CSV file to be
opened.

 mode is the mode the file is to be accessed in. The
mode definitions are as follows:

 READ Read access to file.

File Types CSV

 Chapter Four 125

WRITE Write access to file. ERASE or READ
must be specified with WRITE. (On
MPE systems, WRITE may be
specified without ERASE or READ.)

APPEND Append access to file. WRITE or

ERASE not permitted with APPEND
access.

BINARY File contains BINARY data.

Implementation of this parameter
depends on the operating system.
It is recommended whenever
accessing a file with binary data.

ERASE Erases contents of file prior to

access. If ERASE is specified, file is
not required to already exist. If
erase is not specified, file is
required to already exist.

COMMIT (Windows only.) Contents of the

file buffer are written directly to
disk when fflush() is called.

VAR (MPE only) Do not internally buffer

records. Assume each read and
write is consists of one record. This
is necessary to read variable length
records.

EXCLUSIVE (MPE and Warehouse message files

only) Access the file exclusively.

SHARE (MPE only) Access the file in shared

mode.

LOCK (MPE only) Access the file with

locking enabled.

TRANS Access the file in transaction

protected mode. Using TRANS
allows COMMIT and ROLLBACK by
keeping all file changes in memory

CSV File Types

126 Chapter Four

buffers until a commit or rollback
is done. A commit writes the
buffers to disk, and a rollback
discards the buffers.

MSG File is message file. On MPE

systems, this is an MPE message
file. On other platforms, this is a
Warehouse message file.

NDR File is an MPE message file to be

read with non-destructive reads.
On MPE, specifying NDR implies
MSG too.

CLIB (MPE only) Use C library instead of

MPE intrinsic calls to access files.

UPDATE (MPE only) Access the file with

update access. Use of UPDATE is
necessary to delete or update KSAM
files.

 If mode is not specified, the default mode of READ is

used.

 delimiter-character is a single character that
specifies how the fields are delimited in the file. If
the delimiter is a space, it needs to be enclosed in
quotation marks. The default delimiter-
character is a comma (,).

 quotation-character is a single character that
specifies how fields that contain the delimiter-
character or quote-character are grouped into
a single field. When a field begins with the quote-
character, all characters between it and the
corresponding close quote-character are
considered part of the field. To indicate the quote-
character within a field, the escape-character
must precede the quote-character. The default
quote-character is a double quote (").

 escape-character determines how the quote-

File Types CSV

 Chapter Four 127

character is handled in a quoted field. Inside a
quoted field, the escape-character is skipped
and the next character is included in the field. The
default escape-character is a double quote (").

 strip-character indicates a character that is
stripped at the beginning and end of each field.
The default strip-character is a space. To
indicate no characters are stripped, use STRIP="".

 max-recsize indicates the maximum size of
records read from the file. Records longer than
max-recsize characters are truncated. The
default max-recsize is 1024.

 ALLQUOTED indicates that all fields should be
enclosed in the quotation-character when
read. This specification is not enforced when
reading a CSV file.

 FIELDNAMES indicates that the first record output
contains a list of field names separated by the
delimiter-character. When FIELDNAMES is
specified, the first record is read immediately and
the fields of the CSV file are determined based on
the first record. Subsequent READ and other
statements use the field names from the first
record. If FIELDNAMES is not specified, the READ
statement must contain a FORMAT.

 Examples The following examples assume CUST records are
output to the file CUSTFIL. The CUST records are:

 CUSTNO CUSTNAME BALANCE
88425 Big Apple Orchards 449.60
92010 Green, Field , & Summers 1195.32
90028 Dandy Daisy Farm 4402.79
94008 Circle "T" Tractors 24017.08

 Example 1

 To read a CSV file called CUSTFIL that looks like

the following:

CSV File Types

128 Chapter Four

 88425,Big Apple Orchards,449.60
92010,"Green, Field , & Summers",1195.32
90028,Dandy Daisy Farm,4402.79
94008,"Circle ""T"" Tractors",24017.08

 Use a script that looks like:

 OPEN CF CSV CUSTFIL

FORMAT CUSTFMT
 CUSTNO : ORACLE NUMBER(5)
 CUSTNAME : ORACLE CHAR(40)
 BALANCE : ORACLE NUMBER(8,2)
END
READ C = CF FORMAT CUSTFMT
 .
 .
 .
ENDREAD

 Example 2

To read a CSV file called CUSTFIL that looks like
the following:

 CUSTNO;CUSTNAME;BALANCE
88425;Big Apple Orchards;449.60
92010;'Green, Field , & Summers';1195.32
90028;Dandy Daisy Farm;4402.79
94008;'Circle "T" Tractors';24017.08

 Use a script that looks like:

 OPEN CF CSV CUSTFIL &

 MODE=READ WRITE ERASE &
 DELIM=; QUOTE="'" FIELDNAMES
READ C = CF
 .
 .
 .
ENDREAD

 Notice that since FIELDNAMES is specified, no
FORMAT is used on the READ statement.

READ The READ statement is used to read records from
CSV files.

File Types CSV

 Chapter Four 129

Syntax READ read-tag = db-tag
 [FORMAT format-name]
 [FOR condition]
 [ORDER BY order-list]

 FORMAT is used to specify the record format of the
file. FORMAT is required to specify the record layout
of CSV files, except when the file is opened with
the FIELDNAMES option.

 When a FOR condition is specified, Warehouse
selects only those records matching condition. If
a FOR condition is not specified, all records in the
file are selected.

 When ORDER BY is specified, Warehouse orders the
records as specified by order-list.

 Examples Example 1

OPEN SALES CSV SALESFIL &
 FIELDNAMES DELIM=/ QUOTE="'"
OPEN SDB IMAGE SALES.DB PASS=MYPASS
READ F = SALES
 READ C = SDB.ORDERS &
 FOR CO-NUM = F.CUSTNO
 PRINT CUST-NO, F.CUSTNAME, ORD-AMT
 ENDREAD
ENDREAD

 This example opens the CSV file SALESFIL using
the database tag SALES and the mode of r for read
access. The IMAGE database SALES.DB is also
opened using a database tag of SDB and a password
of MYPASS. The file SALESFIL looks as follows:

 CUSTNO/CUSTNAME/BALANCE
88425/Big Apple Orchards/449.60
92010/Green, Field, & Summers/1195.32
90028/Dandy Daisy Farm/4402.79
94008/Circle "T" Tractors/24017.08

 Matching orders are then read from the ORDERS

dataset in SALES.DB. For each record from
CUST.ORDERS, the fields CUST-NO and ORD-AMT
are printed along with CUSTNAME from the

CSV File Types

130 Chapter Four

SALESFIL file.

SET There are no special SET options for CSV files.

UPDATE The UPDATE statement is not supported for CSV
files.

File Types DB2

 Chapter Four 131

DB2 DB2 file access

This section describes the considerations for each
Warehouse statement that accesses a DB2
database. DB2 is a database from International
Business Machines Corporation (IBM).

When accessing a DB2 database Warehouse uses
SQL data types.

COPY...TO Records may only be copied to a DB2 table or
updateable view.

Syntax COPY record TO output-table

 record is the name of a record created with either
the DEFINE statement or a read tag created by the
READ statement.

 output-table is the name of the DB2 table to
which the record is copied.

 Examples Example 1

OPEN ARCH ARCHIVE ARCFIL
OPEN PROD DB2 ORDERS
READ ORDS = ARCH.ORDS FOR DATE = 920222
 COPY ORDS TO PROD.ORDDB.ORDS
 READ LINES = ARCH.ORD_LINES &
 FOR ORDNO = ORDS.ORDNO
 COPY LINES TO PROD.ORDDB.ORDLINES
 ENDREAD
ENDREAD

 This example opens the archive file ARCFIL, and

opens the DB2 database ORDERS. All ORDS records
with a DATE field equal to 920222 are read from
the archive file. The ORDS records are then copied
into the table ORDDB.ORDS in the DB2 database.
The associated ORD_LINES records are then read
from the archive file and copied into the table
ORDDB.ORDLINES.

CREATE The CREATE statement is not supported for DB2

DB2 File Types

132 Chapter Four

databases.

 DELETE The DELETE statement may only be used on a table
or updateable view. The DELETE statement may not
be used if the records were read using ORDER BY.

 Examples Example 1

OPEN DB DB2 MYDB USER=MYUSER PASS=MYPASS
READ M = DB.PARTS.MASTER &
 FOR STATUS = "NOTREF"
 DELETE M
ENDREAD

 This example opens the DB2 database MYDB using
a user name of MYUSER and a user password of
MYPASS. The table PARTS.MASTER is read for all
parts that have NOTREF in the STATUS field. All
selected records are then deleted.

 OPEN The OPEN statement is used to access a DB2
database.

Syntax OPEN db-tag DB2 data-source

[USER=user-name]
[PASSWORD=user-password]
[EPASS1=encrypted-password]
[DB2DIR=db2-dir]
[DB2INSTANCE=db2-instance]
[SCHEMA=schema-name]

 db-tag is the database tag used to reference the

database in the remainder of the script.

 data-source is the name of the DB2 data source
as it has been set up using the DB232 Control
Panel.

 user-name is the name of the user accessing the
data source.

 user-password is the password for user-name.

File Types DB2

 Chapter Four 133

 encrypted-password is an encrypted password
for user-name on the DB2 data source. An
encrypted password for use in the OPEN statement
may be generated by running Warehouse with –c
(See Checking Warehouse Server Connections
in Chapter Seven) or by DataBridger Studio.
Password encryption is done by a proprietary
algorithm based on the Data Encryption Standard
(DES).

 db2-dir is the home directory of the DB2 instance.
If db2-dir is not specified, Warehouse uses the
DB2 environment variable called DB2DIR.

 db2-instance is the DB2 instance. If db2-
instance is not specified, Warehouse uses the
DB2 environment variable called DB2INSTANCE.

 Schema-name sets the default schema for the
database. This option is usually necessary when
accessing an iSeries (AS/400) DB2 database.

Examples Example 1

OPEN ORD DB2 MYDB2DB &
 USER=MGR PASSWORD=EAGLE

Warehouse is run on AIX and a DB2 data source
named MYDB2DB is opened using a user name MGR
and a password EAGLE. The database is assigned a
Warehouse database tag of ORD to reference the
database in the remainder of the script.

READ The READ statement is used to read records from
DB2 tables and views.

Syntax READ read-tag = db-tag.table-ref
 [FOR condition]
 [ORDER BY order-list]

 table-ref is the name of the table or view
Warehouse is to read. table-ref is one of:
 owner.table-name
 owner.view-name

DB2 File Types

134 Chapter Four

 table-name
 view-name

 When a FOR condition is specified, Warehouse
selects only those records matching condition. If
no FOR condition is specified, all records in the
table or view are selected.

 When ORDER BY is specified, Warehouse orders
(sorts) the records as specified by order-list.

NOTE: When ORDER BY is specified, the records
may not be deleted or updated.

 Examples Example 1

OPEN SALES DB2 SALEINFO
READ M = SALES.CUST.MASTER &
 FOR STATUS = "CLOS" &
 ORDER BY CUST_NAME
 READ D = SALES.CUST.ORDERS &
 FOR CUST_NO = M.CUST_NO
 PRINT CUST_NO, M.CUST_NAME, ORD_AMT
 ENDREAD
ENDREAD

 This example opens the DB2 data source called
SALEINFO. The database tag SALES is used to
access this database environment in the remainder
of the script. The customer master table
CUST.MASTER is read and records where the
STATUS field has a value of CLOS are selected. All
qualifying records from CUST.MASTER are ordered
by the value in the CUST_NAME field. For each
CUST.MASTER record, detail records from the
CUST.ORDERS table are read using the indexed
field CUST_NO. For each record from
CUST.ORDERS, the fields, CUST_NO and ORD_AMT
are printed along with CUST_NAME from the
CUST.MASTER table.

SET The SET statement is used to set DB2 access
options.

File Types DB2

 Chapter Four 135

Syntax SET db-tag DB2-option value

 db-tag specifies the database tag of the DB2
database to which the SET statement is to apply.

 DB2-option specifies the name of the option to be
changed. DB2-option must be one of the following
for DB2 databases:

 LONGSIZE Sets the maximum length of
the LONG data types. When
reading from or writing to a
DB2 database, LONGSIZE
controls the maximum
number of characters (bytes)
that a LONG VARBINARY or
LONG VARCHAR field may
contain. The default value
of LONGSIZE is 10,000.

 Examples Example 1

OPEN C DB2 XDB
SET C LONGSIZE 250000

 This example opens a DB2 data source called XDB.
The database tag C is used to access the database
in the remainder of the script. The LONGSIZE is
set to 250,000 allowing up to 250,000 characters to
be read into or written from LONG and LONG RAW
fields.

UPDATE The UPDATE statement may only be used on a table
or updateable view. The UPDATE statement may not
be used if the records were read using ORDER BY.

 Examples Example 1

OPEN C DB2 MFIL USER=JONES PASS=AAA
CREATE A ARCHIVE ARFILE
READ M = C.DB.MAST FOR STATUS = "CLOS"
 COPY M TO A.DB.MAST
 UPDATE M SET STATUS = "ARCH"
ENDREAD

DB2 File Types

136 Chapter Four

 This example opens a DB2 data source called MFIL

using a user name of JONES and a user password of
AAA. The database tag C is used to access the
database in the remainder of the script. An archive
file called ARFILE is created using the database tag
A. The table DB.MAST is read and records where
the STATUS field has a value equal to CLOS are
selected. All qualifying records from DB.MAST are
copied to the archive file and the field STATUS is
updated to the value of ARCH.

File Types FIXED

 Chapter Four 137

FIXED Fixed length record file access

This section describes the considerations for each
Warehouse statement that accesses fixed length
record files.

 Fixed length record file access is specified using the
type FIXED in the OPEN or CREATE statement and
is supported on all Warehouse platforms.

 Fixed length files should be used primarily when
reading or writing binary data. When reading or
writing character data, a TEXT file should probably
be used.

COPY...TO When copying to a fixed record length file, the file

must have been opened for write access. This is
typically done with the CREATE statement.

 Examples Example 1

OPEN ARCH ARCHIVE ARCFIL
CREATE ORFIL FIXED ORDFILE
READ ORDS = ARCH.ORDS FOR DATE = 920222
 COPY ORDS TO ORFIL
ENDREAD

 This example opens the archive file ARCFIL, and
creates a new fixed record length file ORDFILE
which is given a database tag ORFIL. All ORDS
records from the archive file with a DATE field
equal to 920222 are read and are then copied into
the file ORDFILE.

CREATE The CREATE statement is used to create a new fixed
record length file.

Syntax CREATE file-tag FIXED file-name
[MODE=mode]

 file-tag is the file tag used to reference the file

in the remainder of the script.

 file-name is the file name of the file to be created.

FIXED File Types

138 Chapter Four

 mode is the mode the file is to be accessed in. The

mode definitions are as follows:

 READ Read access to file.

WRITE Write access to file. ERASE or READ

must be specified with WRITE. (On
MPE systems, WRITE may be
specified without ERASE or READ.)

APPEND Append access to file. WRITE or

ERASE not permitted with APPEND
access.

BINARY File contains BINARY data.

Implementation of this parameter
depends on the operating system.
It is recommended whenever
accessing a file with binary data.

ERASE Erases contents of file prior to

access. If ERASE is specified, file is
not required to already exist. If
erase is not specified, file is
required to already exist.

COMMIT (Windows only.) Contents of the

file buffer are written directly to
disk when fflush() is called.

VAR (MPE only) Do not internally buffer

records. Assume each read and
write is consists of one record. This
is necessary to read variable length
records.

EXCLUSIVE (MPE and Warehouse message files

only) Access the file exclusively.

SHARE (MPE only) Access the file in shared

mode.

LOCK (MPE only) Access the file with

File Types FIXED

 Chapter Four 139

locking enabled.

TRANS Access the file in transaction

protected mode. Using TRANS
allows COMMIT and ROLLBACK by
keeping all file changes in memory
buffers until a commit or rollback
is done. A commit writes the
buffers to disk, and a rollback
discards the buffers.

MSG File is message file. On MPE

systems, this is an MPE message
file. On other platforms, this is a
Warehouse message file.

NDR File is an MPE message file to be

read with non-destructive reads.
On MPE, specifying NDR implies
MSG too.

CLIB (MPE only) Use C library instead of

MPE intrinsic calls to access files.

UPDATE (MPE only) Access the file with

update access. Use of UPDATE is
necessary to delete or update KSAM
files.

 If mode is not specified, the default mode of WRITE
is used. On non-Unix systems, appending BINARY
to the mode is used to indicate a binary file. On
Unix systems, this has no effect but is permitted for
compatibility. See the OPEN statement for more
information on mode.

 Examples Example 1

CREATE ORD FIXED ORDFILE

This example creates the fixed length record file
ORDFILE for write access using the database tag
ORD to access the file in the remainder of the script.

FIXED File Types

140 Chapter Four

Example 2

CREATE TMP FIXED TEMP &
 MODE=READ WRITE ERASE

This example creates the fixed length record file
TEMP for read and write access using the database
tag TMP to access the file in the remainder of the
script.

DELETE The DELETE statement is not supported for fixed
record length files.

OPEN The OPEN statement is used to access an existing
fixed record length file.

Syntax OPEN file-tag FIXED file-name
[MODE=mode] [NDR | MSG]

 file-tag is the file tag used to reference the file

in the remainder of the script.

 file-name is the file name of the fixed length
record file to be opened.

 mode is the mode in which the file is accessed. The
mode definitions are as follows:

 READ Read access to file.

WRITE Write access to file. ERASE or READ

must be specified with WRITE. (On
MPE systems, WRITE may be
specified without ERASE or READ.)

APPEND Append access to file. WRITE or

ERASE not permitted with APPEND
access.

BINARY File contains BINARY data.

Implementation of this parameter
depends on the operating system.

File Types FIXED

 Chapter Four 141

It is recommended whenever
accessing a file with binary data.

ERASE Erases contents of file prior to

access. If ERASE is specified, file is
not required to already exist. If
erase is not specified, file is
required to already exist.

COMMIT (Windows only.) Contents of the

file buffer are written directly to
disk when fflush() is called.

VAR (MPE only) Do not internally buffer

records. Assume each read and
write is consists of one record. This
is necessary to read variable length
records.

EXCLUSIVE (MPE and Warehouse message files

only) Access the file exclusively.

SHARE (MPE only) Access the file in shared

mode.

LOCK (MPE only) Access the file with

locking enabled.

TRANS Access the file in transaction

protected mode. Using TRANS
allows COMMIT and ROLLBACK by
keeping all file changes in memory
buffers until a commit or rollback
is done. A commit writes the
buffers to disk, and a rollback
discards the buffers.

MSG File is message file. On MPE

systems, this is an MPE message
file. On other platforms, this is a
Warehouse message file.

NDR File is an MPE message file to be

read with non-destructive reads.

FIXED File Types

142 Chapter Four

On MPE, specifying NDR implies
MSG too.

CLIB (MPE only) Use C library instead of

MPE intrinsic calls to access files.

UPDATE (MPE only) Access the file with

update access. Use of UPDATE is
necessary to delete or update KSAM
files.

 If mode is not specified, the default mode of READ

WRITE for read and write access is used. On non-
Unix systems, appending BINARY to the mode is
used to indicate a binary file. On Unix systems,
this has no effect but is permitted for
compatibility.

MPE/iX Files : By default data read from or written to a FIXED
file is buffered by Warehouse without regard to
MPE/iX record boundaries. The size of the FORMAT
on the READ statement determines the number of
bytes to read. For example, if the format is 40
bytes, but the MPE/iX record size is 80 bytes, the
first Warehouse record will be the first half on
MPE record 1, the second Warehouse record will be
the second half MPE record 1 and so on. On the
other hand if the format is 80 bytes and the MPE
record size is 40 bytes, the first Warehouse record
will be the MPE records 1 and 2.

 Warehouse can also perform file operations on a
traditional record basis. To indicate that file
operations are to be done on a record basis, append
VAR to the modes. This is particularly useful when
reading variable record length files. To read and
write MPE/iX file by record use:

 MODE=VAR Read/write access
(default)

MODE=READ VAR Read only access
MODE=WRITE VAR Write access; discards

previous contents
MODE=READ WRITE VAR Read/write access;

File Types FIXED

 Chapter Four 143

discards previous
contents

MODE=APPEND VAR Append access

 NDR is only available for MPE/iX message files.
The NDR option specifies that each message file
record is to be first read with a non-destructive
read. Before the next record is read from the
message file, a destructive read is done to remove
the record from the file. Using NDR prevents any
records from being lost from the message file if
there is a system problem or abort during
Warehouse script execution.

 MSG provides access to the Warehouse message file
(a capture file) – intended to duplicate the
functions of message files found on the MPE/iX
operating system. Message files must be open with
a mode of either r for reading or w for writing.

When writing to a message file, it is always
appended to the end of the file.

When reading from a message file, the keyword
NDR may be used instead of MSG. This is to
maintain script compatibility between MPE/iX
systems and other systems.

When reading from a message file, the oldest
record is returned first. Destructive reads are
handled the same as with NDR.

If attempting to read from a file that is empty,
Warehouse waits until a record is written if at
least one other process has the file open for
writing. If attempting to read from a file that is
empty and no process has the file open for writing,
an end of file condition is returned. There is an
exception for the first read of the file. The first
read of the file always waits if the file is empty.
Thereafter, a read will only wait on an empty file
if there is at least one other process writing to the
file.

FIXED File Types

144 Chapter Four

Transaction
Files:

FIXED or TEXT files opened with TRANS appended
to the mode (e.g. "MODE=READ WRITE TRANS")
support commit and rollback transaction
processing. This is implemented internally in
Warehouse by keeping track of all file changes in
internal buffers. If the file is subsequently rolled
back, all changes to the file are discarded. If the
file is committed, then all changes are written to
disk.

 Examples Example 1

OPEN ORD FIXED ORDFILE

This example opens the fixed length record file
ORDFILE for read access using the database tag ORD
to access the file in the remainder of the script.

Example 2

OPEN TMP FIXED TEMP MODE=READ WRITE

This example opens the fixed length record file TEMP
for read and write access using the database tag
TMP to access the file in the remainder of the script.

Example 3

OPEN CDRVR FIXED /home/dbadm/custdrvr &
 MODE=READ WRITE TRANS

This example opens the fixed length record file
custdrvr in the directory /home/dbadm. The file
is opened for transaction protected read/write
access. The database tag CDRVR is used to access
the file in the remainder of the script.

READ The READ statement is used to read records from
fixed length record files.

Syntax READ read-tag = file-tag
 FORMAT format-name
 [FOR condition]
 [ORDER BY order-list]

File Types FIXED

 Chapter Four 145

 FORMAT is used to specify the record format of the

file. FORMAT is required to specify the record layout
of fixed length record files.

 When a FOR condition is specified, Warehouse
selects only those records matching condition. If
no FOR condition is specified, all records in the file
are selected.

 When ORDER BY is specified, Warehouse orders
(sorts) the records as specified by order-list.

 Examples Example 1

OPEN SALES FIXED SALESFIL MODE=READ
OPEN SDB IMAGE SALES.DB PASS=MYPASS
FORMAT SALESFIL_FMT
 CO-NUM : X8
 CO-NAME : X40
END
READ F = SALES FORMAT SALESFIL_FMT
 READ C = SDB.ORDERS &
 FOR CO-NUM = F.CO-NUM
 PRINT CUST-NO, F.CO-NAME, ORD-AMT
 ENDREAD
ENDREAD

 This example opens the fixed length record file
SALESFIL using the file tag SALES and the mode of
r for read access. The IMAGE database SALES.DB
is also opened using a database tag of SDB and a
password of MYPASS. The record format
SALESFIL_FMT is defined with the two fields CO-
NUM and CO-NAME. The file SALESFIL is read
using the format SALESFIL_FMT with all records
being selected. Matching orders are then read from
the ORDERS dataset in SALES.DB. For each record
from CUST.ORDERS, the fields CUST-NO and ORD-
AMT are printed along with CO-NAME from the
SALESFIL file.

SET There are no special SET options for fixed length
record files.

FIXED File Types

146 Chapter Four

UPDATE The UPDATE statement may only be used on a file
opened for read and write access.

 Examples Example 1

OPEN CUSTS FIXED CUSTFILE &
 MODE=READ WRITE
FORMAT CUST_FMT
 CUST-NUM : X8
 CUST-NAME : X40
 CUST-ADDR : X40
 CUST-CITY : X20
 CUST-ZIP : X10
 CUST-COUNTRY : X20
END
READ C = CUSTS FORMAT CUST_FMT &
 FOR CUST-COUNTRY = ""
 UPDATE CUSTS SET CUST-COUNTRY = "USA"
ENDREAD

 This example opens the fixed length record file
CUSTFILE using the file tag CUSTS and the mode of
READ WRITE for read and write access. The record
format CUST_FMT is defined with the fields CUST-
NUM, CUST-NAME, CUST-ADDR, CUST-CITY, CUST-
ZIP, and CUST-COUNTRY. CUSTFILE file is read
using the format CUST_FMT, selecting only records
having blanks in the CUST-COUNTRY field. The
CUST-COUNTRY is updated to the value USA.

File Types IMAGE

 Chapter Four 147

IMAGE IMAGE file access

This section describes the considerations for each
Warehouse statement that accesses an IMAGE
database.

IMAGE is a database system from Hewlett-Packard
that runs on HP3000 MPE based machines.
IMAGE is also called TurboIMAGE and
IMAGE/SQL.

COPY...TO When copying to an IMAGE dataset, the database
must have been opened for write access.

 As required by IMAGE, when copying to a detail
dataset, all associated manual master records must
exist.

 COPY may not be used to copy records to an
automatic master dataset.

 Examples Example 1

OPEN PROD IMAGE PRODDB PASS=READER MODE=5
OPEN TEST IMAGE TESTDB PASS=WRITER MODE=3
DEFINE NUM : IMAGE I2 VALUE 1
READ M = PROD.MASTER-SET FOR NUM <= 100
 COPY M TO TEST.MASTER-SET
 READ D = PROD.DETAIL-SET &
 FOR KEY = M.KEY
 COPY D TO TEST.DETAIL-SET
 ENDREAD
 SETVAR NUM = NUM + 1
ENDREAD

 This example opens the IMAGE database PRODDB
using a password of READER and an open mode of 5
and opens the database TESTDB using a password
of WRITER and an open mode of 3. A variable
named NUM is defined to count the records as they
are read and is initialized to 1. The dataset
MASTER-SET from the database PROD is read
serially as long as counter NUM is less than or equal
to 100. This limits the selection to 100 MASTER-
SET records. The qualifying MASTER-SET records

IMAGE File Types

148 Chapter Four

are then copied to the MASTER-SET dataset in the
test database. For each MASTER-SET record copied,
all associated detail records from DETAIL-SET are
read from the production database and copied to
the test database. The counter variable NUM is
incremented by 1.

CREATE The CREATE statement is not supported for IMAGE
databases.

DELETE The DELETE statement may only be used on a
database that has been opened for write access.

 As required by IMAGE, when deleting from a
master dataset, all associated detail records must
have been deleted before the master record may be
deleted.

 DELETE may not be used against an automatic
master dataset.

 Examples Example 1

OPEN DB IMAGE MYDB PASS=WRITER MODE=1
READ M = DB.MASTER-SET
 READ D = DB.DETAIL-SET &
 FOR KEY = M.KEY
 DELETE D
 ENDREAD
 DELETE M
ENDREAD

 This example opens the IMAGE database MYDB
using a password of WRITER and an open mode of
1. The dataset MASTER-SET is read, then all
corresponding detail records from DETAIL-SET are
read and deleted. Only after the detail records
have been deleted, are the master records deleted.

LOCK The LOCK statement is used to issue locks on an
IMAGE database. The LOCK statement can be used
to issue locks at the database, dataset, or data item

File Types IMAGE

 Chapter Four 149

level.

 Before the LOCK statement can be applied to an
IMAGE database, the locking level must be set to
MANUAL.

 WARNING: Before using the LOCK and UNLOCK
statements, the user should fully understand
database locking considerations. (See Appendix D
of the TurboIMAGE/XL Database Management
System Reference Manual.) Misuse of the LOCK
statement can cause database deadlocks and data
integrity problems.

 Syntax LOCK db-tag [lock-desc]
 [,lock-desc][,...]

 db-tag specifies the database tag of the IMAGE
database to which the LOCK statement is to apply.

 lock-desc is one of the following:

 BASE
 ITEM set-name.item-name op expr
 SET set-name

 BASE indicates the that the entire database is to be
locked. When BASE appears in a LOCK statement,
it must appear by itself.

 ITEM indicates the that the dataitem item-name
within the dataset set-name is to be locked for the
values indicated by op and expr. op must be
either =, <=, or >=. expr may be any valid
Warehouse expression.

 SET indicates the that the dataset set-name is to
be locked.

 Examples Example 1

OPEN ORD IMAGE ORDDB PASS=WRITER MODE=1
SET ORD LOCKING MANUAL
READ OM = ORD.ORDERS FOR STAT = "CANC"
 LOCK ORD &

IMAGE File Types

150 Chapter Four

 ITEM ORD.LINES = OM.ORDNO, &
 ITEM ORD.COMMENTS = OM.ORDNO
 READ OL = ORD.LINES &
 FOR ORDNO = OM.ORDNO
 DELETE OL
 ENDREAD
 READ OC = ORD.COMMENTS &
 FOR ORDNO = OM.ORDNO
 DELETE OC
 ENDREAD
 UNLOCK ORD
ENDREAD

 This example opens the IMAGE database ORDDB
using a password of WRITER and an open mode of
1. Locking is set to MANUAL to enable use of the
LOCK statement. The dataset ORDERS is read,
selecting all orders with a status of CANC. A LOCK
statement is applied that locks all records within
the LINES dataset having an order number equal
to ORDNO from the ORDERS dataset. The LOCK
statement also locks all records within the
COMMENTS dataset with order number ORDNO.

 Records with an order number equal to the order
number from ORDERS are then read and deleted
from the datasets LINES and COMMENTS. After the
records have been deleted, an UNLOCK statement
unlocks the LINES and COMMENTS records.

 OPEN The OPEN statement is used to access an IMAGE
database.

Syntax OPEN db-tag IMAGE db-name
 [PASS=db-password]
 [MODE=db-openmode]
 [EPASS1=encrypted-db-password]

[CIU=ON]
[DATA=IMAGE | IMAGE_]

 db-tag is the database tag used to reference the

database in the remainder of the script.

 db-name is the file name of the database root file.

File Types IMAGE

 Chapter Four 151

 db-password is the database password used to
access the database. If no database password is
supplied, the default value of a semicolon (;) for
database creator access is used.

 db-openmode is the database mode used to open
the database. If no db-openmode parameter is
supplied, the default of 5 is used which allows read
only access to the database. Acceptable values of
db-openmode are:

 1 Read/Write access.
2 Update, allow concurrent update.
3 Exclusive read/write access.
4 Read/Write, allow concurrent read.
5 Read only.
6 Read only, allow concurrent modify.
7 Exclusive read only access.
8 Read only, allow concurrent read.

 encrypted-db-password is an encrypted
database password for the database. An encrypted
password for use in the OPEN statement may be
generated by running Warehouse with –c (See
Checking Warehouse Server Connections in
Chapter Seven) or by DataBridger Studio.
Password encryption is done by a proprietary
algorithm based on the Data Encryption Standard
(DES).

 CIU=ON turns on critical item updates for the
specified database. It has the same effect as the
statement SET db CIU ON.

 IMAGE accesses all datasets with IMAGE data
types, which are big-endian (forward byte order).
This is the default for MPE/iX Turbo IMAGE
databases and HP-UX Eloquence databases.

IMAGE_ accesses all datasets with IMAGE_ data
types, which are little-endian (reverse byte order).
This is the default on Windows Eloquence
databases and Linux Eloquence databases.

IMAGE File Types

152 Chapter Four

 Examples Example 1

OPEN ODB IMAGE ORDERS.PUB.DB &
 PASS=MYPASS MODE=1

This example opens the IMAGE database
ORDERS.PUB.DB using a password of MYPASS and an
open mode of 1. The database tag ODB is used to
access this database in the remainder of the script.

 Example 2

OPEN ORDERS IMAGE ORDERS PASS=READ

This example opens the IMAGE database ORDERS
in the login group and account using a password of
READ and the default open mode of 5. The
database tag ORDERS is used to access this
database in the remainder of the script.

READ The READ statement is used to read records from
IMAGE datasets. Warehouse can read from manual
master datasets, detail datasets, and automatic
master datasets. Warehouse can also perform
reverse serial and chained reads. If a third party
indexing (TPI) product is installed and enabled,
(e.g. Omnidex from DISC, or Superdex from
Bradmark) Warehouse is able to take advantage of
additional keys and partial keys in the READ
statement.

Syntax READ read-tag = db-tag.dataset-name
 [(RECNUM)]
 [(BACKWARDS)]
 [FORMAT format-name]
 [FOR condition]
 [ORDER BY order-list]

 When (RECNUM) is specified immediately after the
dataset-name, Warehouse adds a virtual column
named $RECNUM to each IMAGE record. The record
number may be used to read a specific record by
referring to $RECNUM. Record number access is
activated only for the context of this READ

File Types IMAGE

 Chapter Four 153

statement. To enable record number access for the
entire database, see the Warehouse Statement SET.

 When (BACKWARDS) is specified immediately after
the dataset-name Warehouse performs a
backwards read on the dataset. For serial reads,
the entire dataset is read in reverse order. For
chained reads, the chain is read in reverse order.

 When a FORMAT is specified, format-name
overrides the IMAGE definition of the dataset with
the field names and types coming from format
specified by format-name instead of from the
IMAGE dataset definition.

 When a FOR condition is specified, Warehouse
attempts to optimize the FOR condition on the READ
statement, reading by key item, or search item if
possible.

 When ORDER BY is specified, Warehouse first sorts
the selected records, then reads the records in the
order specified by order-list.

 Examples Example 1

OPEN CUST IMAGE CUSTDB.PUB.DB &
 PASS=MYPASS MODE=3
READ M = CUST.MASTER &
 FOR STATUS = "CLOS" &
 ORDER BY CUST-NAME
 READ D = CUST.ORDERS &
 FOR CUST-NO = M.CUST-NO
 PRINT CUST-NO, M.CUST-NAME, ORD-AMT
 ENDREAD
ENDREAD

 This example opens the IMAGE database

CUSTDB.PUB.DB using a password of MYPASS and
an open mode of 3. The database tag CUST is used
to access this database in the remainder of the
script. The master dataset MASTER is read and
records where the STATUS field has a value of CLOS
are selected. All qualifying records from MASTER
are ordered by the value in the CUST-NAME field.

IMAGE File Types

154 Chapter Four

For each MASTER record, detail records from the
ORDERS dataset are read by key using the search
item CUST-NO. For each record from
CUST.ORDERS, the fields CUST-NO and ORD-AMT
are printed along with CUST-NAME from the
CUST.MASTER dataset.

 Example 2

OPEN CUST IMAGE CUSTDB.PUB.DB &
 PASS=MYPASS MODE=3
READ M = CUST.MASTER &
 FOR STATUS = "CLOS" &
 ORDER BY CUST-NAME
 READ D = CUST.ORDERS (BACKWARDS) &
 FOR CUST-NO = M.CUST-NO
 PRINT CUST-NO, M.CUST-NAME, ORD-AMT
 ENDREAD
ENDREAD

 This example is similar to the first example, except
that the ORDERS dataset is read using a backwards
chained read.

 Example 3

OPEN MYDB IMAGE ...
OPEN SRCDB ...
READ SRCORD = SRCDB.ORD
 READ ORD = MYDB.ORDS(RECNUM) &
 FOR $RECNUM = SRCORD.RECORD_NUMBER
 PRINT CUSTNO, ORDAMT
 ENDREAD
ENDREAD

Finds ORD from a source that contains the record
number.

 Third Party
Indexing (TPI)

Warehouse is capable of using third party indexes
when executing a READ statements. If any data
items have been indexed using a tool such as
Omnidex from DISC or Superdex from Bradmark,
Warehouse automatically uses those indexes when
the indexed field is compared for equality (=). For
indexed fields, wildcards and search expression may

File Types IMAGE

 Chapter Four 155

be used. If a search expression is longer than the
field type, the indexing tools require that the
expression be terminated with a semicolon (;). To
access a numeric TPI, use a string terminated by a
semicolon.

 Before Warehouse is able to take advantage of

third party index, the database must have been
enabled for indexing using the utility program
supplied by third party index vendor. If the
database has been enabled, the Warehouse
SHOW db-tag command will show that TPI is ON
for the database. If the SHOW command does not
show ON for the database, Warehouse will not be
able to take advantage of third party indexes.

 For more information on setting up a third party
indexes and for search expressions, see the
documentation for your third party indexing
product.

 TPI Example

OPEN CDB IMAGE CUSTDB PASS=MYPASS MODE=1
READ M = CDB.CUSTMAST FOR ZIP-CODE = "9@;"
 PRINT CUST-NO,
 PRINT CUST-NAME,
 PRINT CUST-CITY,
 PRINT CUST-STATE,
 PRINT ZIP-CODE
ENDREAD

 This example opens the IMAGE database CUSTDB
using a password of MYPASS and an open mode of
1. The database tag CDB is used to access this
database in the remainder of the script. The
dataset CUSTMAST is read and all records that have
a ZIP-CODE field starting with 9 are selected. This
is possible because a third party index has been
created for the ZIP-CODE field.

 $DATASETS A virtual dataset called $DATASETS is available to
IMAGE databases. $DATASETS is read-only and
contains a list of datasets in the database and their

IMAGE File Types

156 Chapter Four

attributes. The fields in $DATASETS are:

SETNAME X16 Name of the IMAGE data set
SETTYPE X2 Dataset type: A, D, or M
ENTRYLEN I1 Number of double-bytes in each

record
BLOCKFACT I1 Blocking factor of the records
NUMENTRIES I2 Number of records in the dataset
CAPACITY I2 Maximum number records

dataset can hold

 $DATASETS Example

OPEN CDB IMAGE CUSTDB PASS=MYPASS MODE=1
READ M = CDB.$DATASETS FOR SETTYPE <> "A"
 PRINT SETNAME,
 PRINT SETTYPE,
 PRINT NUMENTRIES,
 PRINT CAPACITY
ENDREAD

 This example opens the IMAGE database CUSTDB
using a password of MYPASS and an open mode of 1
and a database tag CDB. The virtual dataset
$DATASETS is read selecting all records except
automatic masters.

SET The SET statement is used to set IMAGE access
options.

Syntax SET db-tag image-option value

 db-tag specifies the database tag of the IMAGE
database to which the SET statement is to apply.

 image-option specifies the name of the option to
be changed. image-option must be one of the
following for IMAGE databases:

 CIU Sets critical item update
DEFER Sets defer mode
LOCKING Sets locking option
MAXOPENS Sets maximum number of

internal DBOPENs

File Types IMAGE

 Chapter Four 157

RECNUMS Enables record number access
for the entire database.

TPI Sets third party indexing

value is the new value of the option as follows:

 CIU value must be either ON to
enable critical item update, or
OFF to disable critical item
update. To turn critical item
update on, critical item update
must be allowed by the
database administrator using
DBUTIL.PUB.SYS.

 DEFER value must be either ON to

enable write defer mode, or OFF
to disable write defer mode.
When write defer mode is on,
performance of database writes
and deletes is much better
because IMAGE buffers are
only written to disk as
necessary. DEFER may only be
used when the database has
been opened in mode 3,
exclusive access.

 WARNING: If a system

failure occurs while using an
IMAGE database in write
defer mode, the database can
easily be corrupted.

 LOCKING value must be either BASE,

MANUAL, OFF, ROLLBACK, or
SET.

 BASE Indicates that

Warehouse is to lock
at the database level.
Each time a dataset is
accessed, the database
is locked until the

IMAGE File Types

158 Chapter Four

ENDREAD for the
outermost READ
statement is reached.

 MANUAL Indicates that only

the LOCK and UNLOCK
statements are to be
used for database
locking. SET
LOCKING MANUAL
must be issued on the
database before
Warehouse will accept
LOCK and UNLOCK
statements.

When LOCKING is set
to MANUAL the user is
responsible for
inserting LOCK and
UNLOCK statements at
the appropriate points
in the script file.

 OFF Indicates that

Warehouse is to do no
database locking.

 ROLLBACK Indicates that

Warehouse is to use
database locking and
call the Image
intrinsics DBXBEGIN,
DBXEND, and DBXUNDO
for transaction
control.

 SET Indicates that

Warehouse is to lock
at the dataset level.
Each time a dataset is
accessed, the dataset
is locked until the
ENDREAD for the

File Types IMAGE

 Chapter Four 159

outermost READ
statement is reached.

 MAXOPENS To access the same dataset

more than once concurrently,
Warehouse may open the
database multiple times.
Setting MAXOPENS controls the
maximum number of times that
Warehouse may open the
database. Setting MAXOPENS to
1 limits the number of database
opens to one. The default value
of MAXOPENS is 3 for database
open modes of 1 and 5 and the
default value is 1 for all other
database open modes.

 RECNUM value must be either ON or

OFF. If enabled, a virtual
column named $RECNUM is
appended to each IMAGE
record. In addition, the
record number may be used
to read a specified record by
referring to a value in
$RECNUM.

 TPI value must be either ON to

enable use of third party
indexes or OFF to disable use
of third party indexes. This
option is maintained by
Warehouse and does not
generally need to be
changed. It is provided to
disable the use of third party
indexes in the unusual case
where a database has third
party indexes, but you do not
wish Warehouse to use
them.

 Examples Example 1

IMAGE File Types

160 Chapter Four

OPEN C IMAGE CUST PASS=THEPASS MODE=3
SET C DEFER ON

 This example opens the IMAGE database CUST

using a password of THEPASS and an open mode of
3. The database tag C is used to access the
database in the remainder of the script. Write
defer mode is set ON, improving the performance of
database writes and deletes. Defer mode is only
allowed because the database was opened in mode
3, exclusive access.

Example 2

OPEN ORDDB IMAGE ORDDB.DATABASE PASS=IO
SET ORDDB LOCKING OFF

 This example opens the IMAGE database
ORDDB.DATABASE using a password of IO and the
default open mode of 5. The database tag ORDDB is
used to access the database in the remainder of the
script. The open mode of 5 causes the initial
locking mode to be SET. The SET statement
changes the locking to OFF so that no locking takes
place when the database is accessed.

UNLOCK The UNLOCK statement is used to release locks on an
IMAGE database set by the LOCK statement. The
UNLOCK statement release all locks on the specified
database.

 Before the UNLOCK statement can be applied to an
IMAGE database, the locking level must be set to
MANUAL.

 WARNING: Before using the LOCK and UNLOCK
statements, the user should fully understand
database locking considerations. (See Appendix D
of the TurboIMAGE/XL Database Management
System Reference Manual: http://docs.hp.com/cgi-
bin/doc3k/B3039190010.17091/28) Misuse of the
UNLOCK statement can cause database deadlocks

File Types IMAGE

 Chapter Four 161

and data integrity problems.

 Syntax UNLOCK db-tag

 db-tag specifies the database tag of the IMAGE
database to which the UNLOCK statement is to
apply.

 Examples Example 1

OPEN ORD IMAGE ORDDB PASS=WRITER MODE=1
SET ORD LOCKING MANUAL
LOCK ORD SET ORDERS
READ OM = ORD.ORDERS FOR STAT = "CANC"
 DELETE OM
ENDREAD
UNLOCK ORD

 This example opens the IMAGE database ORDDB

using a password of WRITER and an open mode of
1. The LOCK statement is used to lock the entire
ORDERS dataset. ORDERS is read, selecting all
orders with a status of CANC, and all selected
orders are deleted. After all processing on the
ORDERS dataset is complete, an UNLOCK statement
releases the lock on the ORDERS dataset.

UPDATE The UPDATE statement is used to update a field
within the current record of a READ statement. The
UPDATE statement may only be used on a database
that has been opened for update access.

 Critical items (key fields, search items, sort items)
may only be updated if critical item update has
been enabled for the database.

 UPDATE may not be done against an automatic
master dataset.

 Examples Example 1

OPEN C IMAGE CUST PASS=THEPASS MODE=1
CREATE A ARCHIVE ARFILE

IMAGE File Types

162 Chapter Four

READ M = C.MAST FOR DATE <= 921231
 COPY M TO A.MAST
 UPDATE M SET STATUS = "ARCH"
ENDREAD

 This example opens the IMAGE database CUST

using a password of THEPASS and an open mode of
1. The database tag C is used to access this
database in the remainder of the script. An archive
file called ARFILE is created, and the database tag
A is used to access the file. The master dataset
MAST is read serially and records where the DATE
field has a value less than or equal to 921231 are
selected. All qualifying records from MAST are
copied to the archive file, and the field STATUS is
updated to the value of ARCH.

File Types ODBC

 Chapter Four 163

ODBC ODBC file access

This section describes the considerations for each
Warehouse statement that accesses an ODBC
database.

 ODBC (Open Database Connectivity) is a database
interface standard from the Microsoft Corporation.
ODBC is an interface standard that can be adapted
to practically any type of commercial database. To
access a database using ODBC, an ODBC driver
must exist on your machine and is typically
provided by your operating system or database
vendor.

 Warehouse supports Level 2 compliant ODBC
connections on the following database / operating
system platforms:

Microsoft SQL Server on Microsoft Windows

Prior to accessing a database through ODBC, an
ODBC data source must be set up using the
ODBC32 or ODBC64 control panel.

COPY...TO Records may only be copied to an ODBC table or
updateable view.

Read-only columns are not copied when copying to
an ODBC database. This provides support for SQL
Server identity columns. When an attempt is made
to copy to a table containing an identity column,
Warehouse does not attempt to write to the identity
column.

Syntax COPY record TO output-table
 [(IDENTITY_INSERT)]
 [(HINT locking-hint)]

 record is the name of a record created with either
the DEFINE statement or a read tag created by the
READ statement.

 output-table is the name of the ODBC table to
which the record is copied.

ODBC File Types

164 Chapter Four

 identity-insert makes Warehouse write all

columns to the target table, including any identity
columns. Without the IDENTITY_INSERT option,
identity columns are not written to the target
table.

 locking-hint is used to specify a SQL Server 7
locking hint when copying to a SQL Server 7
datasource. See the SQL Server 7 documentation
for information on the effect of the locking hints at
http://msdn.microsoft.com/en-
us/library/aa213026(SQL.80).aspx
Locking hints available are:

HOLDLOCK NOLOCK
PAGLOCK READCOMMITTED
READPAST READUNCOMMITTED
REPEATABLEREAD ROWLOCK
SERIALIZABLE TABLOCK
TABLOCKX UPDLOCK

 Examples Example 1

OPEN ARCH ARCHIVE ARCFIL
OPEN PROD ODBC ORDERS
READ ORDS = ARCH.ORDS FOR DATE = 920222
 COPY ORDS TO PROD.ORDDB.ORDS
 READ LINES = ARCH.ORD_LINES &
 FOR ORDNO = ORDS.ORDNO
 COPY LINES TO PROD.ORDDB.ORDLINES
 ENDREAD
ENDREAD

 This example opens the archive file ARCFIL, and
opens the ODBC database ORDERS. All ORDS
records with a DATE field equal to 920222 are read
from the archive file. The ORDS records are then
copied into the table ORDDB.ORDS in the ODBC
database. The associated ORD_LINES records are
then read from the archive file and copied into the
table ORDDB.ORDLINES.

 Example 2

OPEN SRCDB REMOTE ...

File Types ODBC

 Chapter Four 165

OPEN TGTDB ODBC MYODBCDB

DEFINE TGTORDREC : USING TGTDB.ORDERS

READ SRCCUST_R = SRCDB.ORDERS
// CUSTOMERID is an identity column
 SETVAR TGTORDREC.CUSTOMERID = &

SRCCUST_R.CUSTOMERID
 SETVAR TGTORDREC.NAME = SRCCUST_R.NAME
 SETVAR TGTORDREC.STATUS = &

SRCCUST_R.STATUS
 SETVAR TGTORDREC.TOTAL = &

SRCCUST_R.TOTAL
 SETVAR TGTORDREC.LINEITEMCOUNT = &

SRCCUST_R.LINEITEMCOUNT

 COPY TGTORDREC TO &

TGTDB.ORDERS(IDENTITY_INSERT)
ENDREAD

This example copies ORDERS from the source to the
target where CUSTOMERID is a SQL Server
identity column. The (IDENTITY_INSERT)
causes the CUSTOMERID value in the target to be
same as in the source. Without
(IDENTITY_INSERT), the CUSTOMERID would be
assigned automatically by SQL Server and would
probably not contain the same value as the source
record.

CREATE The CREATE statement is not supported for ODBC
databases.

 DELETE The DELETE statement may only be used on a table
or updateable view.

 Examples Example 1

OPEN DB ODBC MYDB USER=MYUSER PASS=MYPS
READ M = DB.PARTS.MASTER &
 FOR STATUS = "NOTREF"
 DELETE M
ENDREAD

 This example opens the ODBC database MYDB

ODBC File Types

166 Chapter Four

using a user name of MYUSER and a user password
of MYPS. The table PARTS.MASTER is read for all
parts that have NOTREF in the STATUS field. All
selected records are then deleted.

 OPEN The OPEN statement is used to access an ODBC
database.

Syntax OPEN db-tag ODBC data-source
[USER=user-name]
[PASSWORD=user-password]
[EPASS1=encrypted-password]
[SCHEMA=schema-name]

 db-tag is the database tag used to reference the

database in the remainder of the script.

 data-source is the name of the ODBC data
source as it has been set up using the ODBC32
Control Panel. If the data source name has
spaces or special characters, it must be enclosed in
double quotes.

 user-name is the name of the user accessing the
data source. If no user-name is specified, a
trusted connection is used.

 password is the password for user-name.

 encrypted-password is an encrypted password
for user-name on the ODBC data source. An
encrypted password for use in the OPEN statement
may be generated by running Warehouse with –c
(See Checking Warehouse Server Connections
in Chapter Seven) or by DataBridger Studio.
Password encryption is done by a proprietary
algorithm based on the Data Encryption Standard
(DES).

 Schema-name sets the default schema for the
database.

Examples Example 1

File Types ODBC

 Chapter Four 167

OPEN ORD ODBC MYODBCDB &
 USER=MGR PASSWORD=EAGLE

Warehouse is run on Windows NT and an ODBC
data source named MYODBCDB is opened using a
user name MGR a password EAGLE. The database is
assigned a Warehouse database tag of ORD to
reference the database in the remainder of the
script.

READ The READ statement is used to read records from
ODBC tables and views.

Syntax READ read-tag = db-tag.table-ref
 [(HINT locking-hint)]
 [FOR condition]
 [ORDER BY order-list]

 table-ref is the name of the table or view
Warehouse is to read. table-ref is one of:
 owner.table-name
 owner.view-name
 table-name
 view-name

 locking-hint is used to specify a SQL Server 7
locking hint when reading from a SQL Server 7
datasource. See the SQL Server 7 documentation
for information on the effect of the locking hints at
http://msdn.microsoft.com/en-
us/library/aa213026(SQL.80).aspx
Locking hints available are:

HOLDLOCK NOLOCK
PAGLOCK READCOMMITTED
READPAST READUNCOMMITTED
REPEATABLEREAD ROWLOCK
SERIALIZABLE TABLOCK
TABLOCKX UPDLOCK

 When a FOR condition is specified, Warehouse

selects only those records matching condition. If
a FOR condition is not specified, all records in the
table or view are selected.

ODBC File Types

168 Chapter Four

 When ORDER BY is specified, Warehouse orders
(sorts) the records as specified by order-list.

 Examples Example 1

OPEN SALES ODBC SALEINFO
READ M = SALES.CUST.MASTER &
 (HINT NOLOCK) &
 FOR STATUS = "CLOS" &
 ORDER BY CUST_NAME
 READ D = SALES.CUST.ORDERS &
 FOR CUST_NO = M.CUST_NO
 PRINT CUST_NO, M.CUST_NAME, ORD_AMT
 ENDREAD
ENDREAD

 This example opens the ODBC data source called
SALEINFO. The database tag SALES is used to
access this database environment in the remainder
of the script. The customer master table
CUST.MASTER is read using the SQL Server locking
hint NOLOCK and records where the STATUS field
has a value of CLOS are selected. All qualifying
records from CUST.MASTER are ordered by the
value in the CUST_NAME field. For each
CUST.MASTER record, detail records from the
CUST.ORDERS table are read using the indexed
field CUST_NO. For each record from
CUST.ORDERS, the fields, CUST_NO and ORD_AMT
are printed along with CUST_NAME from the
CUST.MASTER table.

SET The SET statement is used to set ODBC access
options.

Syntax SET db-tag odbc-option value

 db-tag specifies the database tag of the ODBC
database to which the SET statement is to apply.

 odbc-option specifies the name of the option to be
changed. odbc-option must be one of the
following for ODBC databases:

File Types ODBC

 Chapter Four 169

 AUTOCOMMIT Value of ON enables the
ODBC autocommit feature.
Value of OFF disables the
ODBC autocommit feature.
Under usual situations
Warehouse handles
database commits and
setting AUTOCOMMIT is not
necessary. This feature is
provided for unusual data
sources and situations.

 LONGSIZE Sets the maximum length of

the LONG data types. When
reading from or writing to
an ODBC database,
LONGSIZE controls the
maximum number of
characters (bytes) that a
LONG VARBINARY or LONG
VARCHAR field may contain.
The default value of
LONGSIZE is 10,000.

 MAXHANDLES Sets the maximum number

of ODBC handles that
Warehouse may have open
at a time. While Warehouse
is running, ODBC handles
are opened and closed as
necessary. The default
value of MAXHANDLES is 255.
Each ODBC handle utilizes
system resources and it may
be desirable to user fewer
handles.

 ODBCTRACE Value must be either OFF to

disable ODBC tracing, or a
filename containing the
name of the ODBC trace file.
When tracing is on, each
ODBC call is logged to the
trace file by the ODBC

ODBC File Types

170 Chapter Four

driver. Enabling ODBC
tracing has a significant
impact on performance
should only be used to debug
rare situations.

 SHOWSQL Value of ON enables display

of the SQL statements
Warehouse uses for database
access which can sometimes
be useful in debugging
scripts. A value of OFF, the
default, disables display of
SQL statements.

 TRANS Value must be either OFF to

disable database
transactions, or ON to enable
database transactions.
When transactions are
disabled, Warehouse does
not do commits and
rollbacks against the
database. The default value
of TRANS is ON for all
datasources.

 Examples Example 1

OPEN C ODBC XDB
SET C LONGSIZE 250000
SET C MAXHANDLES 100

 This example opens an ODBC data source called
XDB. The database tag C is used to access the
database in the remainder of the script. The
LONGSIZE is set to 250,000 allowing up to 250,000
characters to be read into or written from LONG and
LONG RAW fields. The maximum number of
handles is set to 100 to minimize system resources.

SHOW The SHOW statement is used to display ODBC
attributes about an ODBC data source.

File Types ODBC

 Chapter Four 171

Syntax SHOW db-tag [odbc-option] [table-name]

 db-tag specifies the database tag of the ODBC
database for which attributes are to be displayed.

 odbc-option specifies the name of the option to be
changed. If no odbc-option is specified, the
Warehouse options for the database are displayed.

 ALL Indicates that Warehouse
options, along with DRIVER,
CONNECT and TYPES (see below)
information is displayed.

 CONNECT Displays the ODBC connection

options. The meaning of the
options displayed in
documented in the ODBC
manual.

 DRIVER Displays ODBC driver

information.

 KEYS Displays key information for
table-name. The table-name
parameter is required when
using KEYS.

 TABLE Displays information about

each field in table-name. The
table-name parameter is
required when using TABLE.

 TYPES Displays information about the

data types supported by this
ODBC data source.

Examples Example 1

1> OPEN DB ODBC MyPTA
2> SHOW DB
SQL Server ODBC Data Source
File name : mypta
Long size : 10000

ODBC File Types

172 Chapter Four

Auto commit : OFF
MAXHANDLES : 255
TRANS : ON
Case : ON
Quote : """
SETPOS : OFF

3> SHOW DB CALLIST
RECORD // 194 bytes
 ID : ODBC INTEGER OFFSET 1
 NAME : ODBC CHAR(25) ALLOW NULLS

OFFSET 9
 ADDR : ODBC VARCHAR(50) ALLOW NULLS

OFFSET 41
 PHONE : ODBC DECIMAL(15,0) ALLOW

NULLS OFFSET 97
 Email : ODBC VARCHAR(50) ALLOW NULLS

OFFSET 121
 TXNDATE : ODBC TIMESTAMP ALLOW NULLS

OFFSET 177
END

This example opens an ODBC data source called
MyPTA that is tied to an SQL Server database.
The database tag DB is used to access the database
in the remainder of the script. Information about
the ODBC connection is shown in line 2.
Information about table CALLIST is shown in line
3.

 Example 2

1> OPEN DB ODBC UPSELL
2> SHOW DB
MS Access
 ODBC Data Source
File name : upsell
Long size : 10000
Auto commit : ON
MAXHANDLES : 255
TRANS : ON
Case : ON
Quote : "`"
MSACCESS : ON
SETPOS : OFF

3> SHOW DB TDWDS
RECORD // 696 bytes
 DSNAME : ODBC VARCHAR(20) ALLOW

File Types ODBC

 Chapter Four 173

NULLS OFFSET 1
 DSDATE : ODBC VARCHAR(20) ALLOW

NULLS OFFSET 25
 DSTYPE : ODBC VARCHAR(20) ALLOW

NULLS OFFSET 49
 DSCONNECTSTR : ODBC VARCHAR(255)

ALLOW NULLS OFFSET 73
 DSCOMMENT : ODBC VARCHAR(20) ALLOW

NULLS OFFSET 337
 DSOPEN : ODBC SMALLINT ALLOW

NULLS OFFSET 361
 USERPW : ODBC VARCHAR(144)

ALLOW NULLS OFFSET 369
 DBPW : ODBC VARCHAR(144)

ALLOW NULLS OFFSET 521
 CFGNAME : ODBC VARCHAR(20) ALLOW

NULLS OFFSET 673
END

This example mimics Example #1 but with an MS
Access database.

 Example #3

1> open db ODBC MyContacts
2> show db
MySQL ODBC Data Source
File name : MyContacts
Long size : 10000
Auto commit : ON
MAXHANDLES : 255
TRANS : ON
Case : OFF
Quote : "`"
SETPOS : OFF
FORUPDATE : ON

3> show db CONTACTS
RECORD // 194 bytes
 ID : ODBC SMALLINT ALLOW NULLS

OFFSET 1
 NAME : ODBC VARCHAR(25) ALLOW

NULLS OFFSET 9
 ADDR : ODBC VARCHAR(50) ALLOW

NULLS OFFSET 41
 PHONE : ODBC DECIMAL(15,0) ALLOW

NULLS OFFSET 97
 EMAIL : ODBC VARCHAR(50) ALLOW

NULLS OFFSET 121
 TXNDATE : ODBC TIMESTAMP ALLOW NULLS

ODBC File Types

174 Chapter Four

OFFSET 177
END

4> SHOW DB CONNECT
Connect Options

SQL_ACCESS_MODE = SQL_MODE_READ_WRITE
SQL_AUTOCOMMIT = SQL_AUTOCOMMIT_ON
SQL_LOGIN_TIMEOUT(secs) = 0
SQL_ODBC_CURSORS = SQL_CUR_USE_DRIVER
SQL_OPT_TRACE = SQL_OPT_TRACE_OFF
SQL_CURRENT_QUALIFIER = "testdb"
SQL_CURSOR_COMMIT_BEHAVIOR =
SQL_CB_PRESERVE
SQL_POSITIONED_STATEMENTS:
 SQL_PS_POSITIONED_DELETE = YES
 SQL_PS_POSITIONED_UPDATE = YES
 SQL_PS_SELECT_FOR_UPDATE = NO
SQL_ACTIVE_CONNECTIONS =
SQL_ACTIVE_STATEMENTS =

5> SHOW DB DRIVER

SQL_DBMS_NAME = MySQL
SQL_DRIVER_NAME = myodbc3.dll
Driver conformance level = Level 1
SQL conformance level = Core

6> SHOW DB TYPES

Type Name WH Type Num LocTyp
---------- ------------ ----- ------
bit ODBC BIT -7 bit(1)
tinyint ODBC TINYINT -6 tinyint
. . .

This example mimics Example #1 but with a
MySQL database.

UPDATE The UPDATE statement may only be used on a table
or updateable view.

 Examples Example 1

OPEN C ODBC MFIL USER=JONES PASS=AAA
CREATE A ARCHIVE ARFILE
READ M = C.DB.MAST FOR STATUS = "CLOS"
 COPY M TO A.DB.MAST

File Types ODBC

 Chapter Four 175

 UPDATE M SET STATUS = "ARCH"
ENDREAD

 This example opens an ODBC data source called
MFIL using a user name of JONES and a user
password of AAA. The database tag C is used to
access the database in the remainder of the script.
An archive file called ARFILE is created using the
database tag A. The table DB.MAST is read and
records where the STATUS field has a value equal
to CLOS are selected. All qualifying records from
DB.MAST are copied to the archive file and the field
STATUS is updated to the value of ARCH.

ORACLE File Types

176 Chapter Four

ORACLE Oracle file access

This section describes the considerations for each
Warehouse statement that accesses an Oracle
database.

Oracle is a database from the Oracle Corporation
that runs on many different operating systems
including all supported Warehouse platforms.

COPY...TO Records may only be copied to an Oracle table or

updateable view. It is possible to assign the value
of a column to an Oracle sequence.

Syntax COPY record TO output-table
 [(SEQ column = sequence.NEXTVAL)]

 record is the name of a record created with either
the DEFINE statement or a read tag created by the
READ statement.

 output-table is the name of the Oracle table to
which the record is copied.

 column is the name of a column within the
output-table. For each record copied to the table
column is assigned the next value in the Oracle
sequence specified by sequence. This allows a
column to automatically be assigned a unique
value by Oracle.

 sequence is the name of an Oracle sequence that
has been created by the database administrator.
Note that sequence must be following by
.NEXTVAL.

 Examples Example 1

OPEN ARCH ARCHIVE ARCFIL
OPEN PROD ORACLE SCOTT/TIGER
READ ORDS = ARCH.ORDS FOR DATE = 920222
 COPY ORDS TO PROD.ORDDB.ORDS

File Types ORACLE

 Chapter Four 177

 READ LINES = ARCH.ORD_LINES &
 FOR ORDNO = ORDS.ORDNO
 COPY LINES TO PROD.ORDDB.ORDLINES
 ENDREAD
ENDREAD

 This example opens the archive file ARCFIL, and
opens the Oracle database with a user name of
SCOTT and a user password of TIGER. All ORDS
records with a DATE field equal to 920222 are read
from the archive file. The ORDS records are then
copied into the table ORDDB.ORDS in the Oracle
database. The associated ORD_LINES records are
then read from the archive file and copied into the
table ORDDB.ORDLINES.

 Example 2

OPEN ARCH ARCHIVE ARCFIL
OPEN PROD ORACLE SCOTT/TIGER
READ ORDS = ARCH.ORDS FOR DATE = 920222
 COPY ORDS TO PROD.ORDS &
 (SEQ ORDNO = ORDSEQ.NEXTVAL)
ENDREAD

 This example opens the archive file ARCFIL, and
opens the Oracle database with a user name of
SCOTT and a user password of TIGER. All ORDS
records with a DATE field equal to 920222 are read
from the archive file. The ORDS records are then
copied into the table ORDS in the Oracle database.
As each record is copied to ORDS the column ORDNO
is assigned a the next value in the Oracle sequence
ORDSEQ.

APPEND Using the append hint adds the APPEND hint to the
Oralce INSERT statement used to copy the data and
may increase the performance when writing to an
Oracle table. See the Oracle SQL Reference
Manual for more information.

Syntax COPY rec TO db-tag.target-table (HINT
APPEND)

ORACLE File Types

178 Chapter Four

CREATE The CREATE statement is not supported for Oracle
databases.

 DELETE The DELETE statement may only be used on a table
or updateable view.

 Examples Example 1

OPEN DB ORACLE USER/PASS
READ M = DB.PARTS.MASTER &
 FOR STATUS = "NOTREF"
 DELETE M
ENDREAD

 This example opens the Oracle database using a
user name of USER and a user password of PASS.
The table PARTS.MASTER is read for all parts that
have NOTREF in the STATUS field. All selected
records are then deleted.

 OPEN The OPEN statement is used to access an Oracle
database.

 Note: Only one Oracle environment may opened
within a Warehouse script. If you wish to
open more than one Oracle instance, you
may use a REMOTE database to open other
Oracle instances.

Syntax OPEN db-tag ORACLE user-name/password

[EPASS1=encrypted-password]
[HOME=oracle-home]
[SID=oracle-sid]

 db-tag is the database tag used to reference the

database in the remainder of the script.

 user-name/password is the user name and
password that is used to access the Oracle instance.
It may be any valid Oracle connect string.

 encrypted-password is an encrypted password
for user-name on the Oracle database. An

File Types ORACLE

 Chapter Four 179

encrypted password for use in the OPEN statement
may be generated by running Warehouse with –c
(See Checking Warehouse Server Connections
in Chapter Seven) or by DataBridger Studio.
Password encryption is done by a proprietary
algorithm based on the Data Encryption Standard
(DES).

 oracle-home is the home directory of the Oracle
instance. (On MPE/iX, this directory must be in
HFS syntax, e.g. /ACCT/GROUP.) If oracle-home
is not specified, Warehouse uses the ORACLE_HOME
environment variable.

 oracle-sid is the system ID of the Oracle
instance. If oracle-sid is not specified,
Warehouse uses the ORACLE_SID environment
variable.

Examples Example 1

OPEN ORD ORACLE SCOTT/TIGER &
 HOME=/ORATAUR/PUB SID=A

Warehouse is run on MPE/iX and an Oracle
database is opened using a user name SCOTT, a
password TIGER, an Oracle home of
/ORATAUR/PUB, and an Oracle system ID of A. The
database is assigned a Warehouse database tag of
ORD to reference the database in the remainder of
the script.

READ The READ statement is used to read records from
Oracle tables and views.

Syntax READ read-tag = db-tag.table-ref
 [FOR condition]
 [ORDER BY order-list]

 table-ref is the name of the table or view
Warehouse is to read. table-ref is one of:
 owner.table-name
 owner.view-name
 table-name

ORACLE File Types

180 Chapter Four

 view-name

 When a FOR condition is specified, Warehouse
selects only those records matching condition. If
no FOR condition is specified, all records in the
table or view are selected.

 When ORDER BY is specified, Warehouse orders
(sorts) the records as specified by order-list.

 Examples Example 1

OPEN SALES ORACLE SCOTT/TIGER
READ M = SALES.CUST.MASTER &
 FOR STATUS = "CLOS" &
 ORDER BY CUST_NAME
 READ D = SALES.CUST.ORDERS &
 FOR CUST_NO = M.CUST_NO
 PRINT CUST_NO, M.CUST_NAME, ORD_AMT
 ENDREAD
ENDREAD

 This example opens the Oracle database using a
user name of SCOTT and a user password of TIGER.
The database tag SALES is used to access this
database environment in the remainder of the
script. The customer master table CUST.MASTER is
read and records where the STATUS field has a
value of CLOS are selected. All qualifying records
from CUST.MASTER are ordered by the value in the
CUST_NAME field. For each CUST.MASTER record,
detail records from the CUST.ORDERS table are
read using the indexed field CUST_NO. For each
record from CUST.ORDERS, the fields, CUST_NO and
ORD_AMT are printed along with CUST_NAME from
the CUST.MASTER table.

SET The SET statement is used to set Oracle access
options.

Syntax SET db-tag oracle-option value

 db-tag specifies the database tag of the Oracle
database to which the SET statement is to apply.

File Types ORACLE

 Chapter Four 181

 oracle-option specifies the name of the option to

be changed. oracle-option must be one of the
following for Oracle databases:

 BULK Setting BULK causes
Warehouse to internally
buffer inserts to Oracle
tables and to periodically
send them to Oracle as a
group. This can increase
performance when inserting
many records to a single
table. The value of BULK
should be a number less
than your commit rate that
indicates how many records
to group before sending
them to Oracle. Note: The
commit rate should be a
multiple of the BULK rate so
that bulked records are
committed properly. e.g.
COMMITRATE of 1000, and
BULK of 200.

 LONGSIZE Sets the maximum length of

the LONG and LONG RAW
Oracle data types. When
reading from or writing to
an Oracle database,
LONGSIZE controls the
maximum number of
characters (bytes) that a
LONG or LONG RAW field may
contain. The default value
of LONGSIZE is 10,000.

 SHOWSQL Value of ON enables display

of the SQL statements
Warehouse uses for database
access which can sometimes
be useful in debugging
scripts. A value of OFF, the

ORACLE File Types

182 Chapter Four

default, disables display of
SQL statements.

 Examples Example 1

OPEN C ORACLE SYSTEM/MANAGER
SET C LONGSIZE 250000

 This example opens an Oracle database using a
user name of SYSTEM and a user password of
MANAGER. The database tag C is used to access the
database in the remainder of the script. The
LONGSIZE is set to 250,000 allowing up to 250,000
characters to be read into or written from LONG and
LONG RAW fields.

UPDATE The UPDATE statement may only be used on a table
or updateable view.

 Examples Example 1

OPEN C ORACLE JONES/AAA
CREATE A ARCHIVE ARFILE
READ M = C.DB.MAST FOR STATUS = "CLOS"
 COPY M TO A.DB.MAST
 UPDATE M SET STATUS = "ARCH"
ENDREAD

 This example opens an Oracle database using a
user name of JONES and a user password of AAA.
The database tag C is used to access the database
in the remainder of the script. An archive file
called ARFILE is created using the database tag A.
The table DB.MAST is read and records where the
STATUS field has a value equal to CLOS are
selected. All qualifying records from DB.MAST are
copied to the archive file, and the field STATUS is
updated to the value of ARCH.

File Types REMOTE

 Chapter Four 183

REMOTE REMOTE database and file access

This section describes the considerations for each
Warehouse statement that accesses a remote
database or file.

 Accessing a REMOTE file or database causes a
network TCP/IP connection to be made to a
Warehouse server program running on the remote
system. After the connection is made to the remote
system, the Warehouse client sends data and
messages back and forth to the Warehouse server.
This allows a remote file or database to behave
exactly like a local database of the same type.

 In order for a REMOTE connection to be established
with the OPEN or CREATE statement, a Warehouse
server program must be running on the remote
system and the remote system must have an
AUTHFILE entry that permits access. For more
information on the AUTHFILE and setting up the
Warehouse server see Chapter Seven, Installation
and Execution.

COPY...TO The COPY statement copies a record across the

network to the remote database or file. The
restrictions for COPY are the same as those for the
remote file or database type.

Syntax COPY record TO output-file
 [FORMAT format-name]
 [[;] ERRORS TO error-file]
 [[;] WAIT | NOWAIT]

 record is the name of a record created with either
the DEFINE statement or a read tag created by the
READ statement.

 output-file is the name of the remote file to
which the record is copied. When copying to a
database, output-file is in the format
db-tag.table-name.

 format-name is the name of a format previously

REMOTE File Types

184 Chapter Four

created with the FORMAT statement. When
format-name is specified, the format of the
output-file is redefined to be that of the format
specified by format-name.

 error-file is the name of the file to which the
record is copied in the event of an error while
copying to output-file. When copying errors to
a database, error-file is in the format db-
tag.table-name.

When ERRORS TO is specified the Warehouse client
keeps an internal local copy of each record copied to
the remote database. When the Warehouse server
successfully writes the record to the database, a
success message is sent to the Warehouse client
and the local copy on the client is deleted. If the
server gets an error writing the record, an error
message is sent to the client and the client then
writes the local copy of the record to error-file.

 NOWAIT causes Warehouse to continue processing
the script without waiting for the Warehouse
server to actually copy the record to the remote
database. This allows Warehouse to continue
processing the script without waiting for a response
from the server. NOWAIT is default when copying to
a remote database.

Warning: Using NOWAIT (the default) can have
error recovery implications when used inside a
TRY/RECOVER block. When error occurs on a
NOWAIT COPY, the RECOVER statement will NOT be
entered with the record that had the error.

 WAIT only has an effect when copying to a remote
database. WAIT causes Warehouse to wait for the
server to actually copy the record to the database
before continuing. WAIT is typically used to
enhance error recovery within a TRY block.

Using WAIT can have significant performance
implications since the Warehouse client must wait
for a response from the server for each record

File Types REMOTE

 Chapter Four 185

written.

 Examples Example 1

OPEN ARCH ARCHIVE ARCFIL
OPEN PROD REMOTE BLUE &
 USER=BLUEUSER PASSWORD=MYPASS &
 ORACLE SCOTT/TIGER
READ ORDS = ARCH.ORDS FOR DATE = 920222
 COPY ORDS TO PROD.ORDDB.ORDS
 READ LINES = ARCH.ORD-LINES &
 FOR ORDNO = ORDS.ORDNO
 COPY LINES TO PROD.ORDDB.ORDLINES
 ENDREAD
ENDREAD

 This example opens the local archive file ARCFIL
and opens a remote Oracle database on the system
named BLUE. A user name of BLUEUSER and a
password of MYPASS are used to logon to the remote
system. The remote Oracle database on the system
BLUE is opened by the Warehouse server using an
Oracle user name of SCOTT and an Oracle
password of TIGER. All ORDS records with a DATE
field equal to 920222 are read from the archive
file. The ORDS records are then copied across the
network into the table ORDDB.ORDS in the Oracle
database on the system BLUE. The associated ORD-
LINES records are then read from the archive file
and copied across the network into the table
ORDDB.ORDLINES.

 Example 2

OPEN IMG IMAGE PRODDB PASS=MP MODE=5
OPEN ORA REMOTE BLUE &
 USER=ORAUSER PASSWORD=ORAPASS &
 ORACLE SCOTT/TIGER
READ ORD = IMG.ORD FOR STAT = "CLOS"
 TRY
 COPY ORD TO PROD.ORDDB.ORDS ; WAIT
 RECOVER
 PRINT ORDNO, "could not be copied."
 ENDTRY
ENDREAD

REMOTE File Types

186 Chapter Four

 This example opens the local IMAGE database
PRODDB and opens a remote Oracle database on the
system named BLUE. A user name of ORAUSER and
a password of ORAPASS are used to logon to the
remote system. The remote Oracle database on the
system BLUE is opened by the Warehouse server
using an Oracle user name of SCOTT and an Oracle
password of TIGER. All ORD records with a STAT
field equal to CLOS are read from the IMAGE
database. A TRY statement starts the beginning of
a TRY/RECOVER block. A COPY statement with the
WAIT option is used to copy each ORD record to the
remote Oracle database. WAIT causes Warehouse
to wait for a response from the server for each
record copied. If there is an error copying the
record, the RECOVER block is entered and the
ORDNO for the ORD record is printed. Without the
WAIT incorrect order numbers will be printed in the
RECOVER block.

CREATE The CREATE statement is used to create a remote
file across a network. The remote system must be
running a Warehouse server program and the an
AUTHFILE entry must exist on the remote system
that permits remote access from your local system.

Syntax CREATE db-tag REMOTE remote-system
 USER=user-name [PASSWORD=password]
 [EPASS1=encrypted-password]
 file-type file-name
 [file-options]

db-tag is the name of the database tag used to
reference the database in the remainder of the
script.

 remote-system is the name of the remote system
on which the remote file is to be created. The
remote system must be running a Warehouse
server and must have an AUTHFILE entry allowing
a connection from the local system. The remote
system may also be specified as an IP address. By
default Warehouse connects to the remote system

File Types REMOTE

 Chapter Four 187

using port 1610. To connect to a Warehouse server
running on a different port the syntax: remote-
system : port may be used, e.g.
EAGLE.TAURUS.COM:32400

 user-name is the name of the user on the remote
system. When the connection is established the
server logs in as user-name which establishes file
access and file security restrictions on the remote
system. The user-name is also used to establish
the current working directory, which is the
directory the file is created in by default. There
must be an AUTHFILE entry permitting user-name
from your system to login to the server.

 NOTE: When connecting to a remote MPE/iX
system, any plain text passwords must be included
in the user-name by putting them after a slash in
the standard MPE/iX job card syntax, e.g.
 USER=MGR/UPASS.ACCT/APASS
When using encrypted passwords on MPE/iX
systems, passwords are not necessary in
user-name.

 password is the password for user-name on the
remote system. A password may or may not be
required depending on the AUTHFILE entry on the
server. PASSWORD= may be abbreviated to simple
PASS=.

 encrypted-password is an encrypted password
for user-name on the remote system. An
encrypted password for use in the CREATE
statement may be generated by running
Warehouse with –c (See Checking Warehouse
Server Connections in Chapter Seven) or by
DataBridger Studio. Password encryption is done
by a proprietary algorithm based on the Data
Encryption Standard (DES). A password may or
may not be required depending on the AUTHFILE
entry on the server.

 file-type indicates the type of file to be created
on the remote system. file-type must be one of:

REMOTE File Types

188 Chapter Four

 ARCHIVE Remote Warehouse archive file

CSV Remote comma separated file
FIXED Remote fixed record length file
TEXT Remote text (character) file

 file-name is the name of the file to be created on

the remote system.

 file-options are any file options that are
needed. Each file type has different options that
may be specified.

Once a remote file has been created, Warehouse
can access it just as if the file was actually located
on the local system.

Examples Example 1

CREATE CF REMOTE PURPLE &
 USER=PURPUSER PASS=PURPPASS &
 CSV CUSTFIL &
 MODE=READ WRITE ERASE &
 DELIM=; QUOTE="'" FIELDNAMES

A comma separated values file called CUSTFIL is
created on the system PURPLE. Access to PURPLE is
accomplished with the user name PURPUSER and
password PURPPASS.

 DELETE The DELETE statement deletes the current record
from a remote database. The restrictions for
DELETE are the same as those for the remote file or
database type.

 Examples Example 1

OPEN DB REMOTE GREEN &
 USER=GRNUSER PASS=GRNPASS &
 ORACLE ORAUSER/ORAPASS
READ M = DB.PARTS.MASTER &
 FOR STATUS = "NOTREF"
 DELETE M
ENDREAD

File Types REMOTE

 Chapter Four 189

 This example opens a remote Oracle database on

the system GREEN using an Oracle user name of
ORAUSER and a Oracle password of ORAPASS. The
connection is established to GREEN using a user
name of GRNUSER and a password of GRNPASS. The
table PARTS.MASTER is read for all parts that have
NOTREF in the STATUS field. All records selected
from the remote table are then deleted.

OPEN The OPEN statement is used to access a remote
database or file across a network. The remote
system must be running a Warehouse server
program and the an AUTHFILE entry must exist on
the remote system that permits remote access from
your local system.

Syntax OPEN db-tag REMOTE remote-system
 USER=user-name [PASSWORD=password]
 [EPASS1=encrypted-password]
 database-type database-name
 [database-options]

db-tag is the name of the database tag used to
reference the database in the remainder of the
script.

 remote-system is the name of the remote system
on which the remote database resides. The remote
system must be running a Warehouse server and
must have an AUTHFILE entry allowing a
connection from the local system. The remote
system may also be specified as an IP address. By
default Warehouse connects to the remote system
using port 1610. To connect to a Warehouse server
running on a different port the syntax: remote-
system : port may be used, e.g.
EAGLE.TAURUS.COM:32400

 user-name is the name of the user on the remote
system. When the connection is established the
server logs in as user-name which establishes file
access and file security restrictions on the remote

REMOTE File Types

190 Chapter Four

system. The user-name is also used to establish
the current working directory. There must be an
AUTHFILE entry permitting user-name from your
system to login to the server.

 NOTE: When connecting to a remote MPE/iX
system, any plain text passwords must be included
in the user-name by putting them after a slash in
the standard MPE/iX job card syntax, e.g.
 USER=MGR/UPASS.ACCT/APASS
When using encrypted passwords on MPE/iX
systems, passwords are not necessary in
user-name.

 password is the password for user-name on the
remote system. A password may or may not be
required depending on the AUTHFILE entry on the
server. PASSWORD= may be abbreviated to simple
PASS=.

 encrypted-password is an encrypted password
for user-name on the remote system. An
encrypted password for use in the OPEN statement
may be generated by running Warehouse with –c
(See Checking Warehouse Server Connections
in Chapter Seven) or by DataBridger Studio.
Password encryption is done by a proprietary
algorithm based on the Data Encryption Standard
(DES). A password may or may not be required
depending on the AUTHFILE entry on the server.

 database-type indicates the type of database to
be opened on the remote system. Note that the
permitted types depend on the types of databases
supported on the remote system, not on the local
system. Thus a remote IMAGE database may be
opened on any type of local system, provided the
remote system is an MPE/iX system running a
Warehouse server. database-type must be one
of:

 ALLBASE Remote Allbase database
environment file on an MPE/iX
system

File Types REMOTE

 Chapter Four 191

ARCHIVE Remote Warehouse archive file
CSV Remote comma separated file
FIXED Remote fixed record length file
IMAGE Remote IMAGE database on an

MPE/iX system
ODBC Remote ODBC database
ORACLE Remote Oracle database
TEXT Remote text (character) file

 database-name is the name of the database to be

opened on the remote system. In the case of a
remote Oracle database, file-name would really
be the Oracle user name and password.

 database-options are any database options that
are needed. Each database type has different
options that may be specified.

Once a remote database has been opened,
Warehouse can access it just as if the database was
actually located on the local system.

Examples Example 1

OPEN ORD REMOTE YELLOW USER=YUSR &
 ORACLE SCOTT/TIGER &
 HOME=/ORATAUR/PUB SID=A

Warehouse is run on a local HP-UX system and a
remote Oracle database on the system YELLOW is
opened. Access to YELLOW is accomplished using
the user name YUSR. No password is necessary
because the AUTHFILE on YELLOW indicates that no
password is necessary. The Oracle user name
SCOTT, password TIGER, an Oracle home of
/ORATAUR/PUB, and an Oracle system ID of A is
used to open the database. A Warehouse database
tag of ORD is used to reference the database in the
remainder of the script.

Example 2

OPEN T REMOTE RED &

REMOTE File Types

192 Chapter Four

 USER=DOUG PASSWORD=BLVD &
 ORACLE SCOTT/TIGER &
 HOME=/b/u01/oradata/ora SID=ora
READ X=A.EMP
 PRINT EMPNO, ENAME, JOB, MGR
ENDREAD
GO

Opens an Oracle database on the remote system
RED and prints data from the EMP table.

Example 3

OPEN B REMOTE BLUE.TAURUS.COM &
 USER=MGR.ACCT/APASS &
 IMAGE SALES.DATABASE PASS=; MODE=5
READ C = B.COMPANY FOR &
 STATUS = "GC" ORDER BY COMPANY-NAME
 PRINT COMPANY-KEY, COMPANY-NAME
ENDREAD

Opens a TurboIMAGE database called SALES on
the remote system BLUE.TAURUS.COM and prints
data from the COMPANY dataset. Note the local
system can be a Unix system, Windows NT system,
or any system running Warehouse.

 Example 4

OPEN ORD REMOTE YELLOW USER=YUSR &
 EPASS1=4768f72a55bc34a004cfe109f79e7 &
 ORACLE SCOTT &
 EPASS1=a55a204cf109f59e7f8162c5c9220 &
 HOME=/ORATAUR/PUB SID=ORAA

A remote Oracle database on the system YELLOW is
opened. Access to YELLOW is accomplished using
the user name YUSR and an encrypted password.
The Oracle user name SCOTT is used with an
encrypted password. An Oracle home of
/ORATAUR/PUB, and an Oracle system ID of ORAA
is used to open the database.

READ The READ statement is used to read records from
remote database tables and remote files. The
restrictions for READ are the same as those for the
remote file or database type.

File Types REMOTE

 Chapter Four 193

Syntax READ read-tag = remote-file

 [FORMAT format-name]
 [FOR condition]
 [ORDER BY order-list]

 remote-file is the identifier of the remote file
from which the data is to be read. For a remote
database, this is typically in the format of db-
tag.table-name. For a remote file, this is simply
db-tag.

 When a FORMAT is specified, format-name
overrides the actual definition of the table with the
field names and types coming from the format
format-name.

 When a FOR condition is specified, Warehouse
selects only those records matching condition. If
no FOR condition is specified, all records are
selected.

 When ORDER BY is specified, Warehouse orders
(sorts) the records as specified by order-list.

 Examples Example 1

OPEN SALES REMOTE BLACK &
 USER=HAZEL PASSWORD=BEAUTY &
 ORACLE SCOTT/TIGER
READ M = SALES.CUST.MASTER &
 FOR STATUS = "CLOS" &
 ORDER BY CUST_NAME
 READ D = SALES.CUST.ORDERS &
 FOR CUST_NO = M.CUST_NO
 PRINT CUST_NO, M.CUST_NAME, ORD_AMT
 ENDREAD
ENDREAD

 This example opens the Oracle database on the
remote system BLACK. The user name HAZEL and
password BEAUTY is used to establish the
connection The Oracle database is opened using a
user name of SCOTT and a user password of TIGER.
A database tag SALES is used to access this
database environment in the remainder of the

REMOTE File Types

194 Chapter Four

script. The customer master table CUST.MASTER is
read and records where the STATUS field has a
value of CLOS are selected. All qualifying records
from CUST.MASTER are ordered by the value in the
CUST_NAME field. For each CUST.MASTER record,
detail records from the CUST.ORDERS table are
read using the indexed field CUST_NO. For each
record from CUST.ORDERS, the fields, CUST_NO and
ORD_AMT are printed along with CUST_NAME from
the CUST.MASTER table.

SET The SET statement is used to set access options for
the remote database or file.

Syntax SET db-tag db-option value

 db-tag specifies the database tag of the remote
database or file to which the SET statement is to
apply.

 db-option specifies the name of the option to be
changed. The db-option and value depends on
the type of the remote database or file. The details
for SET are contained in this chapter under each
database.

 Examples Example 1

OPEN C REMOTE VIOLET USER=USR &
 ORACLE SYSTEM/MANAGER
SET C LONGSIZE 250000

 This example opens a remote Oracle database on
the system VIOLET using a user name of USR.
Oracle is accessed using a user name SYSTEM and a
user password MANAGER. The database tag C is
used to access the database in the remainder of the
script. The LONGSIZE is set to 250,000 allowing up
to 250,000 characters to be read into or written
from LONG and LONG RAW fields.

UPDATE The UPDATE statement updates a field within a

File Types REMOTE

 Chapter Four 195

record read from a remote database or file. The
restrictions for UPDATE are the same as those for
the remote file or database type.

 Examples Example 1

OPEN C REMOTE OLIVE &
 USER=SAM PASSWORD=HOUSTON &
 ORACLE JONES/AAA
CREATE A ARCHIVE ARFILE
READ M = C.DB.MAST FOR STATUS = "CLOS"
 COPY M TO A.DB.MAST
 UPDATE M SET STATUS = "ARCH"
ENDREAD

 This example opens a remote Oracle database on
the system OLIVE using a user name of SAM and a
password of HOUSTON. Oracle is accessed with a
user name JONES and a user password AAA. The
database tag C is used to access the database in the
remainder of the script. An archive file called
ARFILE is created using the database tag A. The
table DB.MAST is read and records where the
STATUS field has a value equal to CLOS are
selected. All qualifying records from DB.MAST are
copied to the archive file, and the field STATUS is
updated to the value of ARCH.

REPORT File Types

196 Chapter Four

REPORT Report file access

This section describes the considerations for each
Warehouse statement that can access a report file.

Report files are special Warehouse files that are
accessed by the HEADER and PRINT statements. To
direct report output to other than the standard
output, a report file needs to be opened with the
OPEN statement, and the HEADER and PRINT
statements need to direct output to the report file.

 CREATE The CREATE statement is not supported for report
files; the OPEN statement is used instead.

 DELETE The DELETE statement is not supported for report
files.

 HEADER The HEADER statement is used to specify a page
header for a report file.

Syntax HEADER [rpt-tag] [header-list]

 rpt-tag is the file tag of the report file tag as
specified in the OPEN statement. Note that the
rpt-tag must be enclosed in square brackets ([]).

 header-list is a list of strings or expressions to
be displayed at the top of every report page.

 Examples Example 1

OPEN REP REPORT RPTFIL
HEADER [REP] $TAB 60, "PAGE", $PAGENO
HEADER [REP] $CENTER, "TAURUS SOFTWARE"

This example opens RPTFIL with a tag of REP to be
used throughout the script. The two HEADER
statements create a two line page header. The first
line contains the page number; the second line
contains TAURUS SOFTWARE centered in the page.

File Types REPORT

 Chapter Four 197

 OPEN The OPEN statement is used to access a report file.

Syntax OPEN rpt-tag REPORT file-name [CCTL]

 rpt-tag is the database tag used to reference the
report file in the remainder of the script.

 file-name is the file name of the report file to be
opened.

 CCTL is used to indicate that Fortran style carriage
control is to be used to control pagination in the
report file. For MPE/iX users, a :FILE equation
specifying CCTL needs to be issued for the report
file to get proper pagination.

Examples Example 1

:FILE RPTFIL;DEV=LP;CCTL
OPEN REP REPORT RPTFIL CCTL
HEADER [REP] $CENTER, "TAURUS SOFTWARE"

This example issues an MPE/iX :FILE equation for
the file RPTFIL, pointing it at the line printer and
specifying that carriage control is to be used. The
OPEN statement then opens RPTFIL with a
database tag of REP to be used throughout the
script. CCTL is specified on the OPEN statement to
indicate that carriage control is to be used on the
report file. A HEADER statement is directed to the
output file REP.

 READ The READ statement is not supported for report
files.

 SET The SET statement is used to set the report page
length and the report page width options.

Syntax SET rpt-tag report-option value

 rpt-tag specifies the tag of the report file to which
the SET statement is to apply.

REPORT File Types

198 Chapter Four

 report-option specifies the name of the option to
be changed. report-option must be one of the
following for report files:

 PAGELENGTH Sets the length of the report
page in lines. The default
page length is 55 lines. A
page length of 0 causes no
automatic page breaks.

 PAGEWIDTH Sets the width of the report

page in columns. The
default page width is 80
columns. The maximum
page width is 1024.

 Examples Example 1

OPEN R REPORT MYLP
SET R PAGELENGTH 59
SET R PAGEWIDTH 132

 This example opens an report file MYLP with no
carriage control. The database tag R is used to
access the report file in the remainder of the script.
The page length is set to 59 lines, and the page
width is set to 132 columns.

UPDATE The UPDATE statement is not supported for report
files.

File Types TEXT

 Chapter Four 199

TEXT Text file access

This section describes the considerations for each
Warehouse statement that accesses text files.

 Text file access is specified using the type TEXT in
the OPEN or CREATE statement and is supported on
all Warehouse platforms.

 Text files should be used primarily when reading or
writing character data. When reading or writing
binary data, a FIXED file should probably be used.

COPY...TO When copying to a text file, the file must have been

opened for write access. This is typically done with
the CREATE statement.

 Examples Example 1

OPEN ARCH ARCHIVE ARCFIL
CREATE ORFIL TEXT ORDFILE
READ ORDS = ARCH.ORDS FOR DATE = 920222
 COPY ORDS TO ORFIL
ENDREAD

 This example opens the archive file ARCFIL, and
creates a new text file ORDFILE which is given a
database tag ORFIL. All ORDS records from the
archive file with a DATE field equal to 920222 are
read and are then copied into the file ORDFILE.

CREATE The CREATE statement is used to create a new text
file.

Syntax CREATE file-tag TEXT file-name
[MODE=mode]

 file-tag is the file tag used to reference the file

in the remainder of the script.

 file-name is the file name of the file to be created.

 mode is the mode the file is to be accessed in. The
mode definitions are as follows:

TEXT File Types

200 Chapter Four

 READ Read access to file.

WRITE Write access to file. ERASE or READ

must be specified with WRITE. (On
MPE systems, WRITE may be
specified without ERASE or READ.)

APPEND Append access to file. WRITE or

ERASE not permitted with APPEND
access.

BINARY File contains BINARY data.

Implementation of this parameter
depends on the operating system.
It is recommended whenever
accessing a file with binary data.

ERASE Erases contents of file prior to

access. If ERASE is specified, file is
not required to already exist. If
erase is not specified, file is
required to already exist.

COMMIT (Windows only.) Contents of the

file buffer are written directly to
disk when fflush() is called.

VAR (MPE only) Do not internally buffer

records. Assume each read and
write is consists of one record. This
is necessary to read variable length
records.

EXCLUSIVE (MPE and Warehouse message files

only) Access the file exclusively.

SHARE (MPE only) Access the file in shared

mode.

LOCK (MPE only) Access the file with

locking enabled.

TRANS Access the file in transaction

protected mode. Using TRANS

File Types TEXT

 Chapter Four 201

allows COMMIT and ROLLBACK by
keeping all file changes in memory
buffers until a commit or rollback
is done. A commit writes the
buffers to disk, and a rollback
discards the buffers.

MSG File is message file. On MPE

systems, this is an MPE message
file. On other platforms, this is a
Warehouse message file.

NDR File is an MPE message file to be

read with non-destructive reads.
On MPE, specifying NDR implies
MSG too.

CLIB (MPE only) Use C library instead of

MPE intrinsic calls to access files.

UPDATE (MPE only) Access the file with

update access. Use of UPDATE is
necessary to delete or update KSAM
files.

 If mode is not specified, the default mode of WRITE

ERASE for write access is used.

 Examples Example 1

CREATE ORD TEXT ORDFILE

This example creates the text file ORDFILE for
write access using the file tag ORD to access the file
in the remainder of the script.

Example 2

CREATE TMP TEXT TEMP &
 MODE=READ WRITE ERASE

This example creates the text file TEMP for read
and write access using the database tag TMP to
access the file in the remainder of the script.

TEXT File Types

202 Chapter Four

DELETE The DELETE statement is not supported for text

files.

OPEN The OPEN statement is used to access a text file.

Syntax OPEN file-tag TEXT file-name [MODE=mode]

 file-tag is the file tag used to reference the file
in the remainder of the script.

 file-name is the file name of the text file to be
opened.

 mode is the mode the file is to be accessed in. The
mode definitions are as follows:

 READ Read access to file.

WRITE Write access to file. ERASE or READ

must be specified with WRITE. (On
MPE systems, WRITE may be
specified without ERASE or READ.)

APPEND Append access to file. WRITE or

ERASE not permitted with APPEND
access.

BINARY File contains BINARY data.

Implementation of this parameter
depends on the operating system.
It is recommended whenever
accessing a file with binary data.

ERASE Erases contents of file prior to

access. If ERASE is specified, file is
not required to already exist. If
erase is not specified, file is
required to already exist.

COMMIT (Windows only.) Contents of the

file buffer are written directly to
disk when fflush() is called.

File Types TEXT

 Chapter Four 203

VAR (MPE only) Do not internally buffer
records. Assume each read and
write is consists of one record. This
is necessary to read variable length
records.

EXCLUSIVE (MPE and Warehouse message files

only) Access the file exclusively.

SHARE (MPE only) Access the file in shared

mode.

LOCK (MPE only) Access the file with

locking enabled.

TRANS Access the file in transaction

protected mode. Using TRANS
allows COMMIT and ROLLBACK by
keeping all file changes in memory
buffers until a commit or rollback
is done. A commit writes the
buffers to disk, and a rollback
discards the buffers.

MSG File is message file. On MPE

systems, this is an MPE message
file. On other platforms, this is a
Warehouse message file.

NDR File is an MPE message file to be

read with non-destructive reads.
On MPE, specifying NDR implies
MSG too.

CLIB (MPE only) Use C library instead of

MPE intrinsic calls to access files.

UPDATE (MPE only) Access the file with

update access. Use of UPDATE is
necessary to delete or update KSAM
files.

 If mode is not specified, the default mode of READ

TEXT File Types

204 Chapter Four

WRITE for read and write access is used. See the
OPEN statement under FIXED files form
information about file open modes.

 Examples Example 1

OPEN ORD TEXT ORDFILE

This example opens the text file ORDFILE for read
access using the file tag ORD to access the file in the
remainder of the script.

Example 2

OPEN TMP TEXT TEMP MODE=READ WRITE

This example opens the text file TEMP for read and
write access using the file tag TMP to access the file
in the remainder of the script.

READ The READ statement is used to read records from
text files.

Syntax READ read-tag = db-tag
 FORMAT format-name
 [FOR condition]
 [ORDER BY order-list]

 FORMAT is used to specify the record format of the
file. FORMAT is required to specify the record layout
of text files.

 When a FOR condition is specified, Warehouse
selects only those records matching condition. If
no FOR condition is specified, all records in the file
are selected.

 When ORDER BY is specified, Warehouse orders the
records as specified by order-list.

 Examples Example 1

OPEN SALES TEXT SALESFIL MODE=READ
OPEN SDB IMAGE SALES.DB PASS=MYPASS
FORMAT SALESFIL_FMT

File Types TEXT

 Chapter Four 205

 CO-NUM : X8
 CO-NAME : X40
END
READ F = SALES FORMAT SALESFIL_FMT
 READ C = SDB.ORDERS &
 FOR CO-NUM = F.CO-NUM
 PRINT CUST-NO, F.CUST-NAME, ORD-AMT
 ENDREAD
ENDREAD

 This example opens the text file SALESFIL using
the database tag SALES and the mode of r for read
access. The IMAGE database SALES.DB is also
opened using a database tag of SDB and a password
of MYPASS. The record format SALESFIL_FMT is
defined with the two fields CO-NUM and CO-NAME.
SALESFIL file is read using the format
SALESFIL_FMT with all records being selected.
Matching orders are then read from the ORDERS
dataset in SALES.DB. For each record from
CUST.ORDERS, the fields CUST-NO and ORD-AMT
are printed along with CO-NAME from the
SALESFIL file.

SET There are no special SET options for text files.

UPDATE The UPDATE statement is not supported for text
files.

XML File Types

206 Chapter Four

XML XML file access

This section describes the considerations for each
Warehouse statement that accesses XML files.

 Syntax OPEN db-tag XML xml-file-name
[MODE=mode] [CASEID] [NSTRING]
[FLATTEN] [COLATTR]

 xml-file-name is the name of the XML file to

open.

 mode is the open mode of the file. Same as FIXED,
TEXT and CSV files.

 CASEID Indicates that the identifiers in the XML
file are case sensitive. Using CASEID may require
you to specify table and column names in braces.

 NSTRING Indicates that Warehouse use the
NSTRING type columns for accessing the XML file.
By default, all columns in the XML file are of
STRING type. If any columns may contain wide (16-
bit) characters, the NSTRING parameter should be
specified.

 FLATTEN causes Warehouse to place additional
columns in XML records that can be used to link
nested records. The additional column names are
in the format of column_KEYLINK and contain a 10
digit number linking nested records. Without
using FLATTEN records that contain nested records
are unavailable in Warehouse.

 COLATTR causes XML file attributes to be
interpreted as columns. Using COLATTR is the
only method of making attributes accessible using
Warehouse.

 The internal XML parser built in Warehouse can
parse most any XML file, but Warehouse is only
designed to handle row and column type
structures. This means that only XML suitable for
interpretation as rows and columns can be accessed

File Types XML

 Chapter Four 207

with Warehouse. If an XML is not suitable for
Warehouse, an error is issued on the OPEN
statement. To see the Warehouse interpretation of
an XML file, use the SHOW statement.

 XML files may also be written using the CREATE and
COPY statements.

 Examples Example 1

OPEN SRC ODBC
CREATE TGT XML CUSTFIL.XML
READ C=SRC.CUSTOMERS
 COPY C TO TGT.CUSTOMERS
ENDREAD

 Example 2

The XML file below contains nested records.

<?xml version="1.0"?>
<dataroot>
 <aaa>
 <af1>1 AAA Field 1</af1>
 <af2>1 AAA Field 2</af2>
 <bbb>
 <bf1>1.1 BBB Field 1</bf1>
 <bf2>1.1 BBB Field 2</bf2>
 <ccc>
 <cf1>1.1.1 CCC Field 1</cf1>
 <cf2>1.1.1 CCC Field 2</cf2>
 </ccc>
 </bbb>
 <bbb>
 <bf1>1.2 BBB Field 1</bf1>
 <bf2>1.2 BBB Field 2</bf2>
 <ccc>
 <cf1>1.2.1 CCC Field 1</cf1>
 <cf2>1.2.1 CCC Field 2</cf2>
 </ccc>
 </bbb>
 </aaa>
</dataroot>

Without using FLATTEN, only the CCC data is
available with Warehouse because CCC is the only
record that does not contain nested records. When
FLATTEN is specified, the DATAROOT, AAA, BBB,

XML File Types

208 Chapter Four

and CCC tables all become available with layouts
as follows:

XML DATAROOT layout:

DATAROOT_KEYLINK Parent Link to
nested records (AAA)

Table AAA layout:

DATAROOT_KEYLINK Child Link back
to parent (DATAROOT)

AF1
AF2
AAA_KEYLINK Parent Link to

nested records (BBB)

Table BBB layout:

AAA_KEYLINK Child Link back
to parent (BBB)

BF1
BF2
BBB_KEYLINK Parent Link to

nested records (CCC)

Table CCC layout:

BBB_KEYLINK Child Link back
to parent (BBB)

CF1
CF2

The data from this file is as follows:

Record #1: DATAROOT
 DATAROOT_KEYLINK : 0000000001

Record #2: AAA
 DATAROOT_KEYLINK : 0000000001
 AF1 : 1 AAA Field 1
 AF2 : 1 AAA Field 2
 AAA_KEYLINK : 0000000002

Record #3: BBB
 AAA_KEYLINK : 0000000002
 BF1 : 1.1 BBB Field 1
 BF2 : 1.1 BBB Field 2
 BBB_KEYLINK : 0000000003

Record #4: CCC
 BBB_KEYLINK : 0000000003
 CF1 : 1.1.1 CCC Field 1
 CF2 : 1.1.1 CCC Field 2

File Types XML

 Chapter Four 209

Record #5: BBB
 AAA_KEYLINK : 0000000002
 BF1 : 1.2 BBB Field 1
 BF2 : 1.2 BBB Field 2
 BBB_KEYLINK : 0000000005

Record #6: CCC
 BBB_KEYLINK : 0000000005
 CF1 : 1.2.1 CCC Field 1
 CF2 : 1.2.1 CCC Field 2

 Example 3

Here are some examples with the sample XML file
called WEATHER.XML

 <?xml version="1.0"?>
<WEATHERREPORT

xmlns="WeatherSchema.xml">
 <STATE STATENAME="California">
 <CITY CITYNAME="Los Angeles">
 <SKIES>Partly cloudy</SKIES>
 <HI>87</HI>
 <LOW>65</LOW>
 </CITY>
 </STATE>
 <STATE STATENAME="Nevada">
 <CITY CITYNAME="Las Vegas">
 <SKIES>Sunny</SKIES>
 <HI>98</HI>
 <LOW>74</LOW>
 </CITY>
 </STATE>
</WEATHERREPORT>

 Open weather XML with default parameters and
only CITY is available:

OPEN W XML WEATHER.XML

Tables available:
 CITY

Layout of CITY:
 SKIES
 HI
 LOW

XML File Types

210 Chapter Four

 Open weather XML with the COLATTR parameter
and only CITY is available, but the CITYNAME
attribute can be accessed:

OPEN W XML WEATHER.XML COLATTR

Tables available:
 CITY

Layout of CITY:
 SKIES
 HI
 LOW
 CITYNAME

 Open weather XML with the FLATTEN parameter
and WEATHERREPORT, STATE and CITY are
available with KEYLINKS linking them, however
STATENAME and CITYNAME are not available
because they are attributes within the XML file:

OPEN W XML WEATHER.XML FLATTEN

Tables available:
 WEATHERREPORT
 STATE
 CITY

Layout of WEATHERREPORT:
 WEATHERREPORT_KEYLINK (Parent Link)

Layout of STATE:
 WEATHERREPORT_KEYLINK (Child Link)
 STATE_KEYLINK (Parent Link)

Layout of CITY:
 STATE_KEYLINK (Child Link)
 SKIES
 HI
 LOW

 Open weather XML with the both the FLATTEN and
COLATTR parameters. This makes
WEATHERREPORT, STATE and CITY are available
with KEYLINKS linking them. STATENAME and
CITYNAME are also available as columns:

File Types XML

 Chapter Four 211

OPEN W XML WEATHER.XML FLATTEN COLATTR

Tables available:
 WEATHERREPORT
 STATE
 CITY

Layout of WEATHERREPORT:
 XMLNS
 WEATHERREPORT_KEYLINK (Parent Link)

Layout of STATE:
 WEATHERREPORT_KEYLINK (Child Link)
 STATENAME
 STATE_KEYLINK (Parent Link)

Layout of CITY:
 STATE_KEYLINK (Child Link)
 SKIES
 HI
 LOW
 CITYNAME

Warehouse Expressions

 Chapter Five 213

Chapter Five

Warehouse Expressions

 Warehouse Expressions

214 Chapter Five

Chapter Overview This chapter describes in detail how expressions
are used in Warehouse statements. Warehouse
expressions can be used in conjunction with many
Warehouse statements including: IF, READ,
SETVAR, PRINT, UPDATE, and WHILE.

Warehouse Expressions Identifiers

 Chapter Five 215

Identifiers Identifiers used in Warehouse statements are used
to reference many types of objects. An identifier
may reference a database tag, read tag, record,
array, field, or variable. Warehouse identifiers
may be up to 80 characters long, consisting of the
following characters:

 A..Z Alphabetic.
 a..z Alphabetic. Lower case is upshifted.
 0..9 Numeric digits.
 _ Underscore
 + Plus sign
 - Minus sign
 * Asterisk
 / Slash
 ? Question mark
 # Pound sign
 % Percent sign
 & Ampersand
 @ At sign
 ' Apostrophe

Note that identifiers may contain upper and lower
case characters, but lower case characters are
always upshifted internally.

Identifiers with lower
case and special
characters

It is possible to create and access Warehouse
identifiers that contain lower case and special
characters. Variables containing lower case or
special characters must be enclosed in curly braces
{ }. The following examples define and print three
variables called “abc”, “My Var”, and “A~B”.

 DEFINE {abc} : INTEGER
 DEFINE {My Var} : STRING
 DEFINE {A~B} : STRING
 PRINT {abc}, {My Var}, {A~B}

Database tags A database tag is an identifier created with either

the CREATE or OPEN statement. A file within the
database may be referenced by using the db-tag
and file-name separated by a dot as in: db-
tag.file-name. For example:

Identifiers Warehouse Expressions

216 Chapter Five

 OPEN DBTAG IMAGE MYDB
 READ C = DBTAG.MYFILE

Read tags A read tag identifier is created with the READ

statement and is used both to perform operations
on the file and to access fields within the file
record. (It is not necessary to specify the read tag
to access fields within the active READ statement.)
The following example reads MYFILE from the
database MYDB using a READ tag of MYTAG, and both
FLD1 and FLD2 from MYFILE are printed.

 READ MYTAG = MYDB.MYFILE
 * Print FLD1 without using MYTAG
 PRINT FLD1
 * Print FLD2 using MYTAG
 PRINT MYTAG.FLD2
 DELETE MYTAG
ENDREAD

Record identifiers Records identifiers are created with either the

DEFINE statement or the READ statement. Fields
within the record are accessed using the record
name and field name separated by a dot as in:
record-name.field-name. Example:

 DEFINE CUST : RECORD
 CUST-NO : X8
 NAME : X40
 ADDRESS : RECORD
 ADDR1 : X40
 ADDR2 : X40
 CITY : X12
 ST : X2
 ZIP : X10
 END
END

SETVAR CUST.CUST-NO = "00000000"
SETVAR CUST.NAME = " "
SETVAR CUST.ADDRESS.ADDR1 = " "
SETVAR CUST.ADDRESS.ADDR2 = " "
...

Array identifiers Arrays are created with the DEFINE statement and

they may also be contained within records read
from a file. Array elements are indexed using the
array name with the array index enclosed in square

Warehouse Expressions Identifiers

 Chapter Five 217

brackets as in: array-name[array-index].
Example:

 DEFINE IX : I2
DEFINE TOTALS : 12I2
SETVAR IX = 1
WHILE IX <= 12
 TOTALS[IX] = 0
 SETVAR IX = IX + 1
ENDWHILE

Constants Warehouse Expressions

218 Chapter Five

Constants Warehouse constants are used within expressions.
There are two types of constants, string and
numeric. In general, a string constant is enclosed
in quotes and a numeric constant is just the
number. There are also system constants that are
special variables that begin with a dollar sign ($).

Numeric Constants The format of numeric constants is:

 [+|-] digits [.digits]

digits represents an unsigned number consisting
of any number of digits from 0 through 9. Numeric
constants may have an optional sign, and a decimal
point followed by decimal digits.

 Numeric constants are unsigned unless preceded
by a plus or minus sign. The distinction between
signed and unsigned numbers is usually not
important; however, when reading a file by key, the
sign of the key may be significant.

 Examples of valid numeric constants

12345 unsigned 12,345
-54321 negative 54,321
+2.38 positive 2.38
.0004 0.0004

 Examples of invalid numeric constants

12,345 contains comma
7FFF contains alpha characters
1.23E+6 contains alpha characters
664- has trailing sign

String Constants String constants are specified by enclosing a string
of characters in either single (') or double (")
quotes. Quotations may be continued by putting
more than one quotation successively with spaces
between. The backslash (\) can be used to place
certain special characters in a string constant. The
following backslash combinations represent a
single character within a string:

Warehouse Expressions Constants

 Chapter Five 219

 \" Double quote
 \' Single quote
 \\ Backslash
 \a Bell
 \b Backspace
 \n New line
 \r Carriage return
 \t Tab

 Examples:

String Result
'Taurus' Taurus
'With "quotes"' With "quotes"
'I shouldn\'t' I shouldn't
"\"Help\"" "Help"
"one\\two" one\two
"\aSTOP!\a" <bell>STOP!<bell>
"one" "two" onetwo

System Constants Warehouse provides a number of system constants.
The constants are listed below:

Name Type Description
$ERR Record Error information
$FALSE Boolean False
$HOUR Numeric Time in HHMMSS format
$MYPID Integer Warehouse operating

system process id
(PID).

$NOW DateTime Current date / time
$NOW0 DateTime Current date / time
$NULL Null Null value
$RECNUM Other IMAGE database

column name
$TODAY Numeric Date in YYYYMMDD
$TRUE Boolean True
$UNKNOWN Null Unknown value

 $MYPID is an integer constant that contains the
Warehouse operating system process id (PID). This
can be useful for certain situations, such as writing
log files. Example:

Constants Warehouse Expressions

220 Chapter Five

PRINT "My pid=", $MYPID

 $NOW is a DATETIME system variable that returns
the current date and time and is manipulated by
Warehouse as a date. $TODAY and $HOUR are
numeric variables that contain the date and time
and are manipulated by Warehouse as numbers.
$NOW is recalculated every time it is accessed by the
script.

$NOW0 is the same as $NOW, except that $NOW0 is
calculated only once by Warehouse and remains
the same throughout the entire script run. For
example, $NOW0 can be used to timestamp records
all records with the same timestamp when doing a
load.

 Note: The time zone may need to be set correctly
for $HOUR, $NOW, $NOW0 and $TODAY to return the
correct current values. On MPE/iX and Unix
operating systems, this is done by setting the TZ
operating system environment variable. For
example, on MPE/iX the following command is
issued outside of Warehouse to set the time zone to
Pacific time:

SETVAR TZ "PST8PDT"

 $RECNUM is a virtual column name. For more
information see Chapter 4, IMAGE File Types,
READ and SET commands.

Examples Expression Result

(1 = 2) = $FALSE True
$TODAY - 19000000 980908
STR(STRING($TODAY),3,6) "980908"
$TODAY 19980908
$HOUR 141245
$ERR.WHERRNO 8001

$ERR System
Variable

When performing error recovery, it is often
necessary to know what type of error occurred, the
error number, the error message, or possibly other

Warehouse Expressions Constants

 Chapter Five 221

error information. Warehouse uses a system
variable called $ERR to contain this information.
$ERR is a record variable with the following fields:

DBERRNO : INTEGER
DBERRMSG : STRING
ERRTYPE : STRING
ESCMSG : STRING
WHERRMSG : STRING
WHERRNO : INTEGER
LINENO : INTEGER

 DBERRNO contains the error number of the most

recent database or file operation. When DBERRNO
is set, WHERRNO and WHERRMSG are also set.

 DBERRMSG contains the error message text of the
most recent database or file error. This is
associated with DBERRNO. A zero value indicates
no database error has occurred.

 ERRTYPE is a string that describes the type of error
most recently encountered by Warehouse.
ERRTYPE is one of:

 ALLBASE Most recent error is an Allbase
database error file.

ARCHIVE Most recent error is an archive file
I/O error.

CSV Most recent error is a CSV file I/O
error.

FIXED Most recent error is a fixed file I/O
error.

IMAGE Most recent error is a TurboIMAGE
database error.

ORACLE Most recent error is an Oracle
database error.

TEXT Most recent error is a text file I/O
error.

WHERR Most recent error is a Warehouse
error.

WHWARN Most recent error is a Warehouse
warning.

 ESCMSG contains the string set by the most recent

Constants Warehouse Expressions

222 Chapter Five

ESCAPE statement.

 WHERRMSG contains the error message text of the
most recent Warehouse error. This is associated
with WHERRNO.

 WHERRNO contains the error number of the most
recent Warehouse error. A zero value indicates
that no error has occurred.

 LINENO is used to display the script line number
on which the most recent error has occurred.

 To give the user more control handling errors, the
$ERR error record has both read and write access.

Examples OPEN SALES IMAGE SALES.DB PASS=READER MODE=5
OPEN ORSAL REMOTE SYS04 USER=user PASS=mypass &
 ORACLE SCOTT/TIGER &
 HOME=/oradata/ora/bin SID=orcl

DEFINE STATUS : ORACLE CHAR(1) VALUE "Y"

TRY
 READ M = SALES.CUSTMAST
 COPY M TO ORSAL.CUSTOMERS
 TRY
 READ D = SALES.CUSTHIST &
 FOR CUSTNO = M.CUSTNO
 COPY D TO ORSAL.CHISTORY
 ENDREAD
 RECOVER
 IF $ERR.ERRTYPE = "ORACLE" AND &
 $ERR.DBERRNO = 1
 * Back out incomplete history
 READ OD = ORSAL.CHISTORY FOR &
 CUSTNO = M.CUSTNO
 DELETE OD
 ENDREAD
 ELSE
 ESCAPE "** Unrecognized error"
 ENDIF
 ENDTRY
 ENDREAD
RECOVER
 SETVAR STATUS = "N"
ENDTRY

IF STATUS = "Y"
 PRINT "All customers successfully copied"
ELSE
 PRINT "**** Error copying customers"
ENDIF

Warehouse Expressions Constants

 Chapter Five 223

 In this script, customer records are copied from a
local TurboIMAGE database on an HP3000 to a
remote Oracle database. The TRY statement begins
a TRY block that encloses the outer READ
statement. After the CUSTMAST record is copied,
another TRY block is entered which reads customer
history records and copies them to the Oracle
database. If there is an error while copying the
history records, a RECOVER block is entered that
checks to make certain the error is an Oracle error,
and that the Oracle error number is 1. If the error
is Oracle error 1, all history records that were
copied are backed out. If the error wasn't an
Oracle error, or wasn't error 1, an ESCAPE is issued
to the outer RECOVER.

Operators Warehouse Expressions

224 Chapter Five

Operators The two types of operators supported are unary
and binary. Unary operators only operate on a
single operand to the right of the operator. Binary
operators operate on the two operands on either
side of the operator.

Unary Operators Unary operators supported are: unary positive (+)
and unary negative (-) and NOT for Boolean values.

+ Unary positive
- Unary negative
BNOT Bitwise NOT
NNOT Logical NOT on a boolean expression
NOT Logical NOT

 Unary positive may only be used on numeric data
types. For data types that do not support unsigned
data, unary positive returns the value of the
operand. For data types that support unsigned
data, unary positive returns the value of the
operand if it is signed. If the operand is unsigned,
the positive value of the operand is returned.

 Unary negative may only be used on numeric data
types. For negative values, the positive value of
the operand is returned. For positive and unsigned
values, the negative value of the operand is
returned.

 The BNOT operator does a bitwise not operation on
an integer value. BNOT operates on integers of
arbitrary length. Negative numbers represent an
arbitrary number of 1 bits and non-negative
numbers represent an arbitrary number of 0 bits.

 The NNOT operator is used to negate a logical or
Boolean value. NNOT returns true for a null
operand.

 The NOT operator is used to negate a logical or
Boolean value.

Unary Operator
Examples

Expression Result

Warehouse Expressions Operators

 Chapter Five 225

NOT (1 > 2) $TRUE
-(2 – 5) 3
BNOT 2 -3
BNOT -3 2

NNOT Example Given these definitions:
DEFINE A : ODBC CHAR(10) ALLOW NULLS
VALUE "A"
DEFINE B : ODBC CHAR(10) ALLOW NULLS
VALUE "B"
DEFINE N : ODBC CHAR(10) ALLOW NULLS
VALUE $NULL

The results are:
Expression Result
NNOT (A < B) False
NNOT (A < N) True
NOT (A < B) False
NOT (A < N) Unknown

Binary Operators Binary operators require two operands. The
following operators are supported:

. Record field selector
[] Array index
* Multiplication
/ Division
+ Addition
- Subtraction
|| String concatenation
= Equal
<> Not equal
> Greater than
>= Greater than or equal
< Less than
<= Less than or equal
== Equal to with null equal
AND Logical AND
BAND Bitwise AND
BOR Bitwise OR
BSL Bit shift left
BSR Bit shift right
BXOR Bit exclusive OR
DIVF Floating point divide

Operators Warehouse Expressions

226 Chapter Five

DIVI Integer divide
OR Logical OR
MOD Modulus (Remainder)
PIC Print Picture

 The . operator is used to select a field within a
record.

 The [] operator is used to index into an array
using the syntax:
 array-name [index-value]

 The bit operators BSL, BSR, BAND, BOR and BXOR
operate on integers of arbitrary length and return
an integer of arbitrary length. Negative numbers
represent an arbitrary number of 1 bits and non-
negative numbers represent an arbitrary number
of 0 bits.

 The arithmetic operators (+, -, /, *, DIVF,
DIVI, MOD) only operate on numeric data types
and result in numeric results.

The / operator performs division on two operands
and does either a floating point division or an
integer division depending on the types of the
operands. It is often difficult to determine ahead of
time which type of division will be used. Therefore
the use of the / is discouraged and either the DIVF
operator (floating point divide) or the DIVI
operator (integer divide) should be used instead of
/.

 The || operator concatenates two strings. The +
operator may also be used to concatenate strings,
but its use is discouraged because of potential
confusion with + to do addition.

 The comparison operators (=, <>, <, >, <=,
>=, ==) operate on numeric and string data types
and return a Boolean result.

When comparing fields that may be null, care must
be taken to choose the correct comparison operator.

Warehouse Expressions Operators

 Chapter Five 227

The equal to operator (=) returns unknown when
one or both of the operands are null. This in
accordance with SQL standards and maintains
compatibility between Warehouse and SQL
databases. Two equal signs (==) can be used to
compare two operands and return true when both
operands are null. The == operator returns false
when one operand is null and the other is not,
otherwise the == operator returns the same result
as the = operator.

 The logical operators AND and OR operate on
Boolean data.

 The PIC operator is used to format numeric or date
data. See the PRINT statement in Warehouse
Statements for more information on PIC.

Array comparison Comparison for equality or inequality (=, <>) of
arrays is permitted. To compare two arrays, the
array bounds must be identical and the array
elements must be in the same type family.

 When comparing two arrays that with elements
allowing nulls, if an element is null in both the
arrays, the two elements are considered equal to
each other. This is contrary to the result when
comparing the two null elements directly in which
case the result is considered unknown.

Record comparison Comparison for equality or inequality (=, <>) of
records is permitted. To compare two records, the
records must be identically structured. To compare
records that are of similar, but not identical
structure the CONVERT or MAGICON function may be
used to convert one of the records to the same type
as the other. When comparing records, two fields
that are null are considered equal.

 When comparing two records that contain fields
allowing nulls, if a field is null in both the records,
the two fields are considered equal to each other.
This is contrary to the result when comparing the
two null fields directly in which case the result is

Operators Warehouse Expressions

228 Chapter Five

considered unknown.

Order of Precedence Expressions are evaluated from left to right in

order of operator precedence. Parentheses may be
used to override the default order of precedence.
Operators at the same level of precedence are
evaluated left to right. The order of precedence is
as follows:

 Highest

1. . Record field
 [] Array index

2. BSL Bit shift left
 BSR Bit shift right

3. + Unary positive
 - Unary negative
 BNOT Bitwise not
 NOT Logical not

4. * Multiplication
 / Division
 BAND Bitwise AND
 DIVF Floating point division
 DIVI Integer division
 MOD Modulus (remainder)

5. + Addition
 - Subtraction
 || String concatenation
 BOR Bitwise OR
 BXOR Bitwise exclusive OR

6. < Less than
 <= Less than or equal to
 = Equal to
 > Greater than
 >= Greater than or equal to
 <> Not equal to
 == Equal to with null equal

Warehouse Expressions Operators

 Chapter Five 229

7. AND Logical AND

8. OR Logical OR

9. PIC Print picture

Lowest

Character Set
Conversion

When operations with strings of differing character
sets are performed, an automatic character set
conversion is done using the CMAP function

 The operations that can generate an automatic
CMAP are:

Comparison operators: <, <=, =, >=, >, <>,
==

String assignment: SETVAR statement, UPDATE
statement

String concatenation: ||

 Strings may or may not have a character set.
When a string operation is performed, no character
set conversion is done if either string has no
character set or if the strings have the same
character set. Conversion is only done when both
strings have a character set and the two character
sets differ.

 Automatic character set conversion may be
overridden using the CONVERT or FIELD functions
using a target type with no character set or a
different character set.

For example, the following two code snippets have
the result in the same value in TGTNAM:

 Snippet 1:
 DEFINE SRCNAM : IMAGE X8
 DEFINE TGTNAM : ODBC CHAR(8)
 SETVAR TGTNAM = CMAP(SRCNAM,"HP-
 ROMAN8", "ISO8859-1")

 Snippet 2:
 DEFINE SRCNAM : IMAGE X8 CHARSET

Operators Warehouse Expressions

230 Chapter Five

 "HP-ROMAN8"
 DEFINE TGTNAM : ODBC CHAR(8)
 CHARSET "ISO8859-1"
 SETVAR TGTNAM = SRCNAM // Auto
 CMAP done here

Examples Expression Result

5 * 2 + 1 11
1 + 5 * 2 11
(1 + 5) * 2 12
13 MOD 5 3
2 + 13 MOD 5 5
"AB" || " " || "CDE" "AB CDE"
"PN" || (74 PIC "9(6)") "PN000074"
MYARRAY[1 + 2 * 3] MYARRAY[7]
14 DIVF 5 2.8
14 DIVI 5 2
BNOT 2 BSL 1 -5
(BNOT 2) BSL 1 -6

Implicit Type
Conversion

When evaluating an expression of mixed data
types, Warehouse often needs to convert
intermediate results to a common data type. For
example if an ORACLE NUMBER item is added to a
SQL DECIMAL item, each is first converted to a
Warehouse NUMERIC, and then the addition is
done.

When evaluating an expression Warehouse
requires each operand to belong to a compatible
type family and Warehouse implicitly converts each
operand to the appropriate intermediate data type.
An error is issued if there is an attempt to use an
operand from an incompatible type family. For
example, it is an error to attempt to add string data
with a numeric data even if the string contains
valid numeric characters. To do an explicit type
conversion, the SETVAR statement may be used to
store an intermediate result, or the CONVERT
function may be used.

Care must be exercised when using fixed length
string types such as CHAR, IMAGE X, ORACLE
CHAR, and ODBC CHAR. By default Warehouse

Warehouse Expressions Operators

 Chapter Five 231

strips trailing spaces from a fixed length character
data type when converting to a variable length
character type such as STRING, ORACLE
VARCHAR2, and ODBC VARCHAR. This conversion
often happens implicit and sometimes does not
have the desired result. The PAD function may be
used in an expression to prevent trailing spaces
from being stripped automatically, or AUTOPAD can
be set to prevent trailing spaces from being
stripped in the entire script.

Date Operators Warehouse Expressions

232 Chapter Five

Date Operators Date operators are used to perform operations on
date data. In general: two dates/times may be
subtracted to produce an interval, a date/time and
an interval may added to produce another
date/time, dates/times may be compared with each
other.

Date Addition An INTERVAL may be added to a DATE or
DATETIME resulting in a DATETIME. An INTERVAL
may also be added to a TIME or another INTERVAL
resulting in an INTERVAL. The following table
shows the result of date addition:

DATETIME + DATETIME = Error
DATETIME + DATE = Error
DATETIME + TIME = DATETIME
DATETIME + INTERVAL = DATETIME
DATE + DATETIME = Error
DATE + DATE = Error
DATE + TIME = DATETIME
DATE + INTERVAL = DATETIME
TIME + DATETIME = DATETIME
TIME + DATE = DATETIME
TIME + TIME = INTERVAL
TIME + INTERVAL = INTERVAL
INTERVAL + DATETIME = DATETIME
INTERVAL + DATE = DATETIME
INTERVAL + TIME = INTERVAL
INTERVAL + INTERVAL = INTERVAL

Date Subtraction A DATE or DATETIME may be subtracted from
another DATE or DATETIME resulting in an
INTERVAL. Two INTERVALs or two TIMEs may also
be subtracted resulting in an INTERVAL. The
following table shows the result of date subtraction:

DATETIME - DATETIME = INTERVAL
DATETIME - DATE = INTERVAL
DATETIME - TIME = DATETIME
DATETIME - INTERVAL = DATETIME
DATE - DATETIME = INTERVAL
DATE - DATE = INTERVAL
DATE - TIME = DATETIME
DATE - INTERVAL = DATETIME
TIME - DATETIME = Error
TIME - DATE = Error

Warehouse Expressions Date Operators

 Chapter Five 233

TIME - TIME = INTERVAL
TIME - INTERVAL = INTERVAL
INTERVAL - DATETIME = Error
INTERVAL - DATE = Error
INTERVAL - TIME = INTERVAL
INTERVAL - INTERVAL = INTERVAL

Date Comparison Date comparison is done using the operators: <, <=,
=, >=, >, and <>. A date comparison is legal
between DATEs, and DATETIMEs, or between TIMEs
and INTERVALs, but not between DATEs/DATETIMEs
and TIMEs/INTERVALs. The following table shows
the legal date compares based on the date subtype:

Date1 Date2 Is Legal?
DATETIME DATETIME Yes
DATETIME DATE Yes
DATETIME TIME No
DATETIME INTERVAL No
DATE DATETIME Yes
DATE DATE Yes
DATE TIME No
DATE INTERVAL No
TIME DATETIME No
TIME DATE No
TIME TIME Yes
TIME INTERVAL Yes
INTERVAL DATETIME No
INTERVAL DATE No
INTERVAL TIME Yes
INTERVAL INTERVAL Yes

Null Operations Warehouse Expressions

234 Chapter Five

Null Operations Null operations are operations where one of the
operands contains a null value. In general when
an operation or function is performed on a null
value, the result is null.

Operations on nulls Whenever one of the unary operators NOT, -, or + is
used on a null value the result is null. Whenever
one of the binary operators *, /, MOD, -, +, or || is
used on a null value the result is null.

Unless otherwise indicated, Warehouse functions
also return null when a null value is used as an
operand.

Null Comparisons Whenever one of the comparison operators <, <=, =,
>=, >, or <> is used on a null, the result is
considered unknown. An exception to this is when
two fields containing null are compared within a
record or array comparison, they are considered
equal. (The Warehouse constant $UNKNOWN can be
used to indicate an unknown value.)

The == operator can be used to return true when
both operands are null. The == operator returns
false when one operand is null and the other is not.
The == operator returns the same as = when
neither value is null

Examples Assuming the following Warehouse statements
have been executed to define and assign values to 4
variables:

DEFINE ISNULL1 : ORACLE NUMBER ALLOW NULLS
DEFINE ISNULL2 : ORACLE NUMBER ALLOW NULLS
DEFINE ISNTNULL1 : ORACLE NUMBER ALLOW NULLS
DEFINE ISNTNULL2 : ORACLE NUMBER ALLOW NULLS

SETVAR ISNULL1 = $NULL
SETVAR ISNULL2 = $NULL
SETVAR ISNTNULL1 = 8
SETVAR ISNTNULL2 = 3

 Then the following expressions will result in the

value indicated:

Warehouse Expressions Null Operations

 Chapter Five 235

 Expression Result

-ISNULL1 $NULL
-ISNTNULL1 -8
ISNTNULL1 + ISNULL2 $NULL
ISNTNULL1 + ISNTNULL2 + ISNULL2 $NULL
ABS(ISNULL1) $NULL

 ISNULL1 = ISNULL2 $UNKNOWN
IF(ISNULL1 = ISNULL2,"YES","NO") "NO"
ISNULL1 <> ISNULL2 $UNKNOWN
IF(ISNULL1 <> ISNULL2,"YES","NO") "NO"
ISNULL1 = ISNTNULL2 $UNKNOWN
ISNULL1 <> ISNTNULL2 $UNKNOWN
IF(ISNULL1 <> ISNTNULL2,"YES","NO") "NO"
ISNULL1 < ISNTNULL2 $UNKNOWN
ISNULL1 == ISNTNULL2 $FALSE
ISNULL1 == ISNULL2 $TRUE
NOT (ISNULL1 == ISNULL2) $FALSE

Built-In Functions Warehouse Expressions

236 Chapter Five

Built-In Functions Warehouse supports built-in functions to do many
different operations, such as date and string
manipulations.

ABS Returns the absolute value of a number. If the
data type of the parameter supports unsigned
values, ABS returns an unsigned value, otherwise a
positive value is returned.

Usage ABS(number) -> number

Examples Expression Result

ABS(-11) 11
ABS(12) 12

ACCEPT Reads a string from the user’s standard input

(stdin) after displaying a prompt string.

Warning: ACCEPT is operating system and
environment dependent.

Usage ACCEPT(prompt-string) -> string

 Examples Expression Result

ACCEPT("Order number:") user input

BOOLEAN Converts a string to a Boolean value. A valid

Boolean string must be an integer value with zero
being false and any other value being true, or the
string must be a partial match of one of the
following words: YES, NO, TRUE, FALSE,
$TRUE, $FALSE.

Usage BOOLEAN(string) -> boolean

 string is the string to be converted to a Boolean

value.

 Examples Expression Result

Warehouse Expressions Built-In Functions

 Chapter Five 237

BOOLEAN("NO") False
BOOLEAN("T") True
BOOLEAN("TR") True
BOOLEAN(" Yes ") True
BOOLEAN(" 0001") True
BOOLEAN("$TRUE") True
BOOLEAN(" -687") True
BOOLEAN("+000") False
BOOLEAN(" N") False
BOOLEAN("AB") Error
BOOLEAN(" ") Error
BOOLEAN("-1.2") Error
BOOLEAN("1e3") Error
BOOLEAN("$ TRUE") Error
BOOLEAN("$YES") Error
BOOLEAN("NOPE") Error

CHR Returns the ASCII character given a numeric value

from 0 to 255. To convert a character into a
numeric value, use the ORD function.

Usage CHR(number) -> character

Examples Expression Result

CHR(65) "A"
CHR(97) "a"
CHR(400) Error

CMAP Translate characters from one character set to

another using a charmap file. The charmap files
used for the translation must be listed in the
CHARMAPS file. See Appendix C for more
information on setting up charmap files.

Usage CMAP(source-str, source-charset, target-

charset) -> string

 source-str is the string to be translated into the
target character set.

 source-charset is the name of the source
character set as it is defined in the charmap file.
This must be a constant string enclosed in
quotation marks.

Built-In Functions Warehouse Expressions

238 Chapter Five

 target-charset is the name of the target

character set as it is defined in the charmap file.
This must be a constant string enclosed in
quotation marks.

 string is the resulting translated string of
characters in the target-charset.

Example Expression

CMAP(MYSTR, "ASCII", "EBCDIC")

Translates MYSTR from ASCII to EBCDICusing
charmap files.

CONVERT Converts an expression to a specific data type. The

CONVERT function requires two parameters. The
first parameter is an expression, and the second
parameter is a string constant that describes the
data type of the expression after conversion.

 Data type conversion converts the expression to the
specified data type. An error can occur if the
expression cannot be converted. For example, the
string 12A4 cannot be converted to a number
because it contains non-numeric characters.

 When converting string types to numeric types, the
requirements for the string are the same as when
using the NUMERIC function: Leading and trailing
spaces are permitted, a leading sign is permitted
and a decimal point is permitted.

 The CONVERT function may be used to convert a
record from one layout to another. Conversion is
done using the same rules as COPY and SETVAR.
Fields with matching names in the record are
converted and fields not in the destination record
are initialized. If MSGS are on, then information
about field conversions are displayed.

 When converting numbers to strings, the results
are the same as when using the STRING function.

Warehouse Expressions Built-In Functions

 Chapter Five 239

Usage CONVERT(expr, "data-type") -> result

 Examples Expression Result

CONVERT("1234", "IMAGE I2") 1234
CONVERT("1234", "ORACLE CHAR(4)") "1234"
CONVERT("1234", "ORACLE CHAR(2)") "12"
CONVERT("12", "ORACLE CHAR(4)") "12 "
CONVERT(1432, "ALLBASE FLOAT") 1432.0
CONVERT("7F", "INTEGER") Error

CONVERT(REC1, "FORMAT REC2FMT") Record
CONVERT(CUST, "USING DB.CUST") Record

DATE2STR Converts a date, time, datetime, or interval to a
string using a date format.

DATE2STR is the inverse function of STR2DATE
(which converts a string to a date).

Usage DATE2STR(date, fmt-string) -> string

 date is the date, time, datetime, or interval type

item to be converted to a string.

 fmt-string is a string containing tokens that
describe the format of date-string. The tokens
are the same as those used in the print PIC of a
date item and the DATE2STR function. The
allowable tokens in fmt-string are:

 A.D. BC/AD indicator with periods
 AD BC/AD indicator
 A.M. AM/PM indicator with periods
 AM AM/PM indicator
 AY Two character year and century where

00-99 is century 19, and A0-J9 is
century 20. e.g. A5 represents 2005

 B.C. BC/AD indicator with periods
 BC BC/AD indicator
 CC 2 digit century
 D The day of week (1-7, Sun=1,Sat=7)
 DAY The 9 character name of day of week

Built-In Functions Warehouse Expressions

240 Chapter Five

(SUNDAY-SATURDAY)
 DD The 2 digit day number within month

(1-31)
 DDD The 3 digit day number within year

(1-366)
 D* The 1 or 2 digit day number within

month (1-31)
 DY The 3 character name of day of week

(SUN-SAT)
 HH The 2 digit hour in 12 hour time (01-

12)
 HH12 The 2 digit hour in 12 hour time (01-

12)
 HH24 The 2 digit hour in 24 hour time (00-

23)
 H* The 1 or 2 digit hour in 12 hour time

(1-12)
 H*12 The 1 or 2 digit hour in 12 hour time

(1-12)
 H*24 The 1 or 2 digit hour in 24 hour time

(0-23)
 J Julian day number since January 1,

4713 BC.
 MI The 2 digit minute within the hour

(00-59)
 MM The 2 digit month number within year

(01-12)
 M* The 1 or 2 digit month number within

year (1-12)
 MON The 3 character name of month (JAN-

DEC)
 MONTH The 9 character name of month

(JANUARY-DECEMBER)
 NNN... Number of days (up to 9 Ns)
 P.M. AM/PM indicator with periods
 PM AM/PM indicator
 Q Quarter within year (1-4)
 RM Roman numeral month number within

year (I-XII) (4 characters)
 RR The last 2 digits of the year. (Same as

YY.)
 SCC 2 digit century with leading - for BC

dates

Warehouse Expressions Built-In Functions

 Chapter Five 241

 SS The 2 digit second within the minute
(00-59)

 SSSSS The 5 digit second within the day (0-
86399)

 SYYYY 4 digit year with leading sign: + for
AD dates,- for BC dates

 TTT... Fractions of seconds (up to 9 Ts)
 W The week within the month (1-5)
 WW The 2 digit week within the year (01-

53)
 Y The last digit of the year
 YY The last 2 digits of the year.
 YYY The last 3 digits of the year
 YYYY The 4 digit year
 Y,YYY Year with comma
 space Space
 : Colon
 / Virgule
 - Hyphen
 . Period
 , Comma
 ; Semicolon
 "str" Quoted string

 Date format items are case insensitive, except

that the case determines the appearance of
alphabetic date items.

 Examples The following examples assume the following

statements:

 DEFINE DTM : DATETIME
SETVAR DTM = &
 DATE2STR("960401 1504","YYMMDD HH24MI")

Expression Result

DATE2STR(DTM,"YYMMDD") 960401
DATE2STR(DTM,"DD-MON-YY") 1-APR-96
DATE2STR(DTM,"DD-Mon-YY") 1-Apr-96
DATE2STR(DTM,"HH24:MI:SS") 15:04:00
DATE2STR(DTM,"Month DD,YY") April 1,96
DATE2STR(DTM,"Day, Mon DD") Mon, Apr 1
DATE2STR(DTM,"M*/D*/YY") 4/1/96

Built-In Functions Warehouse Expressions

242 Chapter Five

DAYNUM Calculates the day number since Monday,
December 31, 1900 given a numeric date in
YYYYMMDD format. DAYNUM and YYYYMMDD are
used to do date calculations. The DAYNUM function
returns negative values for dates prior to December
31, 1900.

DAYNUM is the inverse function of YYYYMMDD.
DAYNUM can be used to calculate the day of the
week by taking DAYNUM MOD 7 where Monday is 0,
Tuesday is 1, ..., Sunday is 6.

Usage DAYNUM(yyyymmdd-number) -> day-number

 Examples Expression Result

DAYNUM(19890704) 32327
DAYNUM(19890704) MOD 7 1
DAYNUM(17760704) -45469
DAYNUM(19010101) 1
DAYNUM(19001230) -1
DAYNUM(19940931) Error

DIRECT Directly executes a database statement. The

DIRECT function is database dependent and is used
to execute SQL statements when accessing an SQL
database. The DIRECT function may only be called
using the CALL statement.

The DIRECT function is used to execute a database
statement after the GO. The DIRECT statement is
used to execute a database statement before the go.

To trap errors returned by the DIRECT function,
use the TRY statement.

Usage CALL DIRECT(db-tag, string)

 Examples Statement

CALL DIRECT(CUSTDB, "DROP TABLE TMP")

DWNS Downshifts a string. DWNS converts all uppercase

Warehouse Expressions Built-In Functions

 Chapter Five 243

characters in a given string to lowercase
characters.

To upshift a string use the UPS function.

Usage DWNS(string) -> string

 Examples Expression Result

DWNS("Taurus") "taurus"
DWNS("SOFTWARE") "software"

ESCAPE Generates an error condition. The error may be

caught by an active TRY function or TRY statement.
If there is no active TRY, then an error message is
displayed and script processing halts. The ESCAPE
function operates just like the escape statement
except that it may be used in an expression. The
ESCAPE function does not return a value.

Usage ESCAPE(error-msg)

 Examples Expression

IF(ISNUMERIC(ORDNUM), NUMERIC(ORDNUM),
ESCAPE("ORDNUM not numeric"))

Checks if ORDNUM can be converted to a number. If
it can then the converted number is returned,
otherwise an error condition is generated.

FIELD Used to extract data from a record or variable and

coerce it to a specific data type. The FIELD
function requires three parameters. The first
parameter is a variable name, the second
parameter is a byte index into the first parameter,
and the third parameter is a string constant that
describes the data type of the expression after
extraction.

Usage FIELD(var, index, "data-type") -> result

Built-In Functions Warehouse Expressions

244 Chapter Five

 var can be a defined variable, a record name, a
field from a record, or the result of a CONVERT
function. Note: You must be familiar with the
data type of var to get the desired results.

 index is the byte index of the first byte of data to
be extracted. The first byte is byte 1.

 data-type is a string constant that describes the
field after extraction. FIELD simply extracts the
bytes, then interprets them as the specified type.
No conversion is done.

 Examples The following examples assume the script:

DEFINE R : RECORD
 F : ORACLE CHAR(4)
 G : ORACLE CHAR(6)
END
SETVAR R.F = "ABCD"
SETVAR R.G = "efghij"

Expression Result

FIELD(R, 1, "ORACLE CHAR(3)") "ABC"
FIELD(R, 3, "ALLBASE CHAR(3)") "CDe"
FIELD(R.F, 1, "IMAGE X3") "ABC"
FIELD(R.F, 3, "ORACLE CHAR(3)") Error(1)
FIELD(R.G, 3, "ORACLE CHAR(3)") "ghi"
FIELD(R, 3, "ALLBASE SMALLINT") 17220(2)
FIELD(R, 1, "IMAGE Z1") +1(3)

(1) Field overflow. R.F is only 4 characters long, so
taking 4 characters starting at character 3
overflows the field.

(2) The characters CD interpreted as a 2-byte signed
integer. The same as:

 ORD("C") * 256 + ORD("D")

(3) A is a positive 1 in a zoned field.

FILLL Fills string on the left. FILLL repeatedly inserts

fill-string to the left of source-string until
the string is of length final-length. If final-

Warehouse Expressions Built-In Functions

 Chapter Five 245

length is less than the length of source-string,
characters are stripped from the RIGHT of source-
string to make it length final-length.

 Usage FILLL(source-string,
 final-length,
 fill-string) -> string

 Examples Expression Result

FILLL("May", 6, "*") "***May"
FILLL("May", 8, "*-") "*-*-*May"
FILLL("12.3", 8, "0") "000012.3"
FILLL("Taurus", 4, "*") "urus"

FILLR Fills string on the right. FILLR repeatedly inserts

fill-string to the right of source-string until
the string is of length final-length. If final-
length is less than the length of source-string,
characters are stripped from the LEFT of source-
string to make it length final-length.

Usage FILLR(source-string,

 final-length,
 fill-string) -> string

 Examples Expression Result

FILLR("May", 6, "*") "May***"
FILLR("May", 8, "*-") "May*-*-*"
FILLR("12.3", 8, "0") "12.30000"
FILLR("Taurus", 4, "*") "Taur"

GETENV Returns the value of an environment variable when

passed the variable name. If there is no variable of
the name given, a null string is returned.

Warning: GETENV is operating system dependent.

Usage GETENV(string) -> string

 Examples Expression Result

GETENV("USER") "jones"

Built-In Functions Warehouse Expressions

246 Chapter Five

HASH Returns a "random" 32-bit integer from the

parameters. HASH returns a value created from the
parameters by using a 32-bit cyclic redundancy
check (CRC) algorithm. The purpose of HASH to
create a key value that can quickly be accessed
using an indexed table. This can create dramatic
performance improvements versus searching for a
number of values individually. HASH returns a
value from -2147483648 to 2147483647.

 Usage number = HASH(parm1 [, parm2 [, parm3
...]])

 Examples Expression Result

HASH(0) -148897096
HASH(0, 0) -538414411
HASH(0, 0, 0) 1309568012
HASH(0, 1) -618041598
HASH(1, 0) 59107330
HASH("One") -982575239
HASH("One ") -1632807640
HASH("One", 1) -1743613981
HASH($null) 79764919

IF Evaluates a Boolean expression and returns either

of two expressions depending on the result of the
Boolean expression.

Usage IF(cond,true-value,false-value) -> value

 cond is any Boolean expression. The result of

cond determines whether the IF function returns
true-value or false-value.

 true-value is an expression that is returned if
cond evaluates to TRUE.

 false-value is an expression that is returned if
cond evaluates to FALSE. false-value must
have the same data type family as true-value.

 Examples Expression Result

Warehouse Expressions Built-In Functions

 Chapter Five 247

IF(5 < 9, "Yes", "No") "Yes"
IF(3 < 7 and 9 < 5, 1, 0) 0
IF(ISNUMERIC("ab"), 10, 0) 0

ISBOOLEAN Tests if a string can be converted to a Boolean

value. If the string can be successfully converted to
a Boolean value TRUE is returned, otherwise
FALSE is returned. If TRUE is returned, then the
BOOLEAN function can convert the string to a
Boolean value without error. A valid Boolean
string must be an integer value, or a partial match
of one of the following words: YES, NO, TRUE,
FALSE, $TRUE, $FALSE.

Usage ISBOOLEAN(string) -> boolean

 string is the string to be tested for a Boolean

value.

 Examples Expression Result

ISBOOLEAN("NO") True
ISBOOLEAN("T") True
ISBOOLEAN("TR") True
ISBOOLEAN(" Yes ") True
ISBOOLEAN(" 0001") True
ISBOOLEAN("$TRUE") True
ISBOOLEAN(" -687") True
ISBOOLEAN("+000") True
ISBOOLEAN(" N") True
ISBOOLEAN("AB") False
ISBOOLEAN(" ") False
ISBOOLEAN("-1.2") False
ISBOOLEAN("1e3") False
ISBOOLEAN("$ TRUE") False
ISBOOLEAN("$YES") False
ISBOOLEAN("NOPE") False

ISDATE Tests if a string can be converted to a date value. If

the string can be successfully converted to a date
value TRUE is returned, otherwise FALSE is
returned. If TRUE is returned, then the STR2DATE
function can convert the string to a date value
without error.

Built-In Functions Warehouse Expressions

248 Chapter Five

Usage ISDATE(date-str) -> boolean

 or

ISDATE(date-str, format-str) -> boolean

 string is the string to be tested for a date value.

 format-str is optional and if present is a string
containing tokens that describe the format of
date-str. See the STR2DATE function for
information on allowable format strings.

If format-str is absent, ISDATE examines the
string and returns TRUE if the string is in a
recognizable format that can be converted to a date
using the STR2DATE function. ISDATE can
automatically recognize dates, times, datetimes,
and intervals. See the STR2DATE function for
information on how dates are interpreted.

 Examples Expression Result

ISDATE("960401","YYMMDD") True
ISDATE("12/12/24","YY/MM/DD") True
ISDATE("121224","RRMMDD") True
ISDATE("121224","HHMISS") True
ISDATE("Sep 8,92","MON DD,YY") True
ISDATE(" 960401","YYMMDD") False
ISDATE("12-12-24","YY/MM/DD") False
ISDATE("16:12:24","HH24:MI:SS") True
ISDATE("16:12:24","HH:MI:SS") False
ISDATE("960401") True
ISDATE("12/12/24") True
ISDATE("12/12/1924") True
ISDATE("121224") True
ISDATE("12-Dec-24") True
ISDATE("Sep 8,92") True
ISDATE(" 960401") True
ISDATE("12-12-24") True
ISDATE("16:12:24") True
ISDATE("16") True
ISDATE("May") False

ISDIGITS Scans a string and returns true if all characters in

the string are "0"-"9". If the string contains any
characters other than "0"-"9" (including spaces)
false is returned. A minimum string length may be
specified. When a minimum length is specified,

Warehouse Expressions Built-In Functions

 Chapter Five 249

false is returned if the length of the string is less
than minimum. A zero length string returns false,
unless a minimum length of zero was specified.

 Usage result = ISDIGITS(source-string [,

minimum-length])

 source-string is the string to be checked for only
digits.
minimum-length is an optional parameter that
indicates the minimum length of the string. This
parameter is often necessary when checking fixed
length strings because spaces are truncated from a
fixed length string prior to the ISDIGITS check.

 Examples Example Result
ISDIGITS("3141") TRUE
ISDIGITS(" 3141") FALSE
ISDIGITS("-3141") FALSE
ISDIGITS("31.41") FALSE
ISDIGITS("3141", 6) FALSE
ISDIGITS("7F") FALSE
ISDIGITS("") FALSE
ISDIGITS("", 0) TRUE

ISNUMERIC Tests if a string can be converted to a numeric

value. If the string can be successfully converted to
a numeric value TRUE is returned, otherwise
FALSE is returned. If TRUE is returned, then the
NUMERIC function can convert the string to a
numeric value without error.

A numeric string may contain a decimal point, an E
followed by an exponent, a single leading or
trailing sign, a sign of CR or DB, and a comma as a
1000s separator. Leading and trailing spaces,
asterisks (*), and dollar signs ($) are ignored. A
numeric string may not contain more than one
sign, more than one decimal point, or a misplaced
comma separator. A null string or a string
containing all spaces is interpreted as zero.

Usage ISNUMERIC(string) -> boolean

 string is the string to be tested for a numeric

Built-In Functions Warehouse Expressions

250 Chapter Five

value.

 Examples Expression Result

ISNUMERIC("25") True
ISNUMERIC(" -16 ") True
ISNUMERIC("1.64") True
ISNUMERIC(" ") True
ISNUMERIC("1.64E+04") True
ISNUMERIC("-16.4E-4") True
ISNUMERIC("- 21") True
ISNUMERIC("-000021") True
ISNUMERIC("12,345,678") True
ISNUMERIC("12,345.678") True
ISNUMERIC("$1.64") True
ISNUMERIC("-$1.64") True
ISNUMERIC("44 CR") True
ISNUMERIC("55 DB") True
ISNUMERIC("1,2345.67") False
ISNUMERIC("1.64E+04.2") False
ISNUMERIC("44 AB") False
ISNUMERIC("-44 CR") False
ISNUMERIC("-44-") False

ISNUMP Determines if a string is a valid packed decimal

string that can be converted using the NUMP
function. To be a valid packed decimal string, all
nibbles (4-bits) except the last nibble must contain
a binary value from 0 through 9.

 The last nibble must contain one either 12, 13, or
15 as follows:

Decimal Hexadecimal Description
12 C Number is positive
13 D Number is negative
15 F Number is unsigned
 (treated as positive)

 Usage result = ISNUMP(source-string)

 source-string is the string to be checked be a
valid packed decimal string.

 Examples Expression Result

ISNUMP(CHR($00) || CHR($00)
|| CHR($00)) FALSE

Warehouse Expressions Built-In Functions

 Chapter Five 251

ISNUMP(CHR($00) || CHR($00)
|| CHR($0F)) TRUE

ISNUMP(CHR($12) || CHR($34)
|| CHR($56)) FALSE

ISNUMP(CHR($12) || CHR($34)
|| CHR($5D)) TRUE

ISNUMP(CHR($12) || CHR($CC)
|| CHR($5C)) FALSE

ISNUMP(CHR($01) || CHR($20)
|| CHR($0C)) TRUE

ISNUMZ Determines if a string is a valid zoned decimal

string that can be converted using the NUMZ
function.

To be a valid zoned decimal string, all positions
except the last must contain "0"-"9". The last
position of the string must contain one of:
 "0" - "9" : indicating an unsigned number
 "{" : positive, with last digit of 0.
 "A" - "I" : positive, with last digit 1-9 (A=1, I=9)
 "}" : negative, with last digit of 0.
 "J" - "R" : negative, with last digit 1-9 (J=1,

R=9)

 Usage result = ISNUMZ(source-string)

 source-string is the string to be checked be a

valid zoned decimal string.

 Examples Expression Result
ISNUMZ("3141") TRUE
ISNUMZ(" 3141") FALSE
ISNUMZ("-3141") FALSE
ISNUMZ("31.41") FALSE
ISNUMZ("7F") TRUE
ISNUMZ("7Z") FALSE
ISNUMZ("}") TRUE
ISNUMZ("") FALSE

LEN Returns the length of a string. Leading and
trailing blanks are counted as part of the string
length. Leading blanks may be stripped with the
TRIML function, and trailing blanks may be
stripped with the TRIMR function. LEN may be
used on native (double byte) character strings to

Built-In Functions Warehouse Expressions

252 Chapter Five

return the number of characters in the string.

Usage LEN(string) -> number

 Examples Expression Result

LEN(" ABCD ") 9
LEN(TRIMR(" ABCD ")) 6

MAGICON Converts a record to another record of similar
structure for the purpose of record assignment or
comparison.

 MAGICON converts the source record to the
destination layout by matching up field names in
three passes. Matching fields are converted to the
data type of the destination field. The first pass
matches field names exactly. (e.g. In the first pass
CUST-NAME matches CUST-NAME, but not
CUST_NAME) The second pass matches
alphanumeric characters in the field name exactly,
but matches special characters with any other
special character. (e.g. In the second pass CUST-
NAME matches CUST_NAME and CUST$NAME, but not
CUSTNAME) The third pass matches alphanumeric
characters in the field name exactly and special
characters are ignored. (e.g. In the third pass
CUST-NAME matches CUSTNAME and CUST_N-A-M-
E, but not CUSTOMER-NAME) Any fields that are
unmatched in the three passes are initialized.

 If MSGS are on, MAGICON displays information
about each field being converted.

 Usage MAGICON(rec, "FORMAT format-name")

 or
 MAGICON(rec, "USING db-tag.table-name")

 Examples OPEN IMDB IMAGE CUSTDB

OPEN ORDB ORACLE SCOTT/TIGER
READ ICUST = IM.CUSTOMER
 READ OCUST = ORDB.CUSTOMER FOR &
 CUST_NO = ICUST.CUSTNO
 IF OCUST <> &
 MAGICON(ICUST, "USING ORDB.CUSTOMER")

Warehouse Expressions Built-In Functions

 Chapter Five 253

 UPDATE OCUST SET &
 CUST_NAME = ICUST.CUST_NAME, &
 CUST_ADDR = ICUST.CUST-ADDR, &
 CITY = ICUST.CITY, &
 STATE = ICUST.STATE, &
 ZIP = ICUST.ZIP
 ENDIF
 ENDREAD
ENDREAD

 This example reads customer records from an
IMAGE database CUSTDB, then for each customer
record read, it reads the corresponding customer
record from an Oracle database. The record from
the Oracle database is compared with the record
from the IMAGE database to see if they are
different. The MAGICON function is used to convert
the IMAGE customer record to be the same format
as the Oracle customer record. The MAGICON
function matches the fields as follows:

 IMAGE Oracle
CUSTNO --> CUST_NO
CUST_NAME --> CUST-ADDR
CITY --> CITY
STATE --> STATE
ZIP --> ZIP

If the records are different, then fields in the
Oracle database are updated the values from the
IMAGE database.

MATCH Matches string with a pattern. If the string

matches the pattern TRUE is returned, otherwise
FALSE is returned.

Usage MATCH(source, pattern) -> boolean

source is the string to be matched for the pattern.

pattern is the pattern. Special pattern characters
are listed below, all other characters must match
exactly. Special pattern characters:

* Match zero or more characters.

Built-In Functions Warehouse Expressions

254 Chapter Five

? Match a single character.
@ Match alphabetic character: A-Z, a-z.
Match single numeric digit: 0-9
[s] Range or list of characters, e.g. For

hexadecimal digit use [0-9a-fA-F]
! Escape character.

 Examples Expression Result

MATCH("Taurus", "T*") True
MATCH("Taurus", "*s") True
MATCH("Taurus", "*a*r*s") True
MATCH("Taurus", "@@@@@@") True
MATCH("Taurus", "??????") True
MATCH("Taurus", "*u*") True
MATCH("Taurus", "[A-Z]*") True
MATCH("Taurus", "*#") False
MATCH("Taurus", "@@@@@") False
MATCH("12.3", "##.#") True
MATCH("12.3", "##*") True
MATCH("@", "@") False
MATCH("@", "!@") True
MATCH("Taurus", "[a-z]*") False

NUMERIC Converts a string to a number. The string to be

converted may contain a decimal point, an E
followed by an exponent, a single leading or
trailing sign, a sign of CR or DB, and a comma as a
1000s separator. Leading and trailing spaces,
asterisks (*), and dollar signs ($) are ignored. A
numeric string may not contain more than one
sign, more than one decimal point, or a misplaced
comma separator. A null string or a string
containing all spaces is interpreted as zero.

 NUMERIC is the inverse function of STRING (which
converts a number to a string).

Usage NUMERIC(string) -> number

 Examples Expression Result

NUMERIC("25") 25
NUMERIC(" -16 ") -16
NUMERIC("1.64") 1.64

Warehouse Expressions Built-In Functions

 Chapter Five 255

NUMERIC("1.64E+04") 16400
NUMERIC("-16.4E-4") -0.00164
NUMERIC("- 21") -21
NUMERIC("-000021") -21
NUMERIC("12,345,678") 12345678
NUMERIC("12,345.678") 12345.678
NUMERIC("$1.64") 1.64
NUMERIC("-$1.64") -1.64
NUMERIC("44 CR") 44
NUMERIC("55 DB") -55
NUMERIC(" ") 0
NUMERIC("1,2345.67") Error
NUMERIC("1.64E+04.2") Error
NUMERIC("44 AB") Error
NUMERIC("-44 CR") Error
NUMERIC("-44-") Error

NUMP Converts a packed decimal string to a number. See

ISNUMP above for description of a packed decimal
number.

 If the string passed to NUMP is not a valid packed
decimal string, a warning is issued and the result
is undefined. (The TRY function or statement can
used to catch the warning.)

 Usage result = NUMP(source-string)

 source-string is the string to be checked be a
valid packed decimal string.

 Examples Expression Result

NUMP(CHR($00) || CHR($00)
|| CHR($00)) Error

NUMP(CHR($00) || CHR($00)
|| CHR($0F)) 0

NUMP(CHR($12) || CHR($34)
|| CHR($56)) Error

NUMP(CHR($12) || CHR($34)
|| CHR($5C)) 12345

NUMP(CHR($12) || CHR($34)
|| CHR($5D)) -12345

NUMP(CHR($01) || CHR($20)
|| CHR($0C)) 1200

NUMZ Converts a zoned decimal string to a number. See

Built-In Functions Warehouse Expressions

256 Chapter Five

ISNUMZ above for description of a zoned decimal
number. If the string passed to NUMZ is not a valid
zoned decimal string, a warning is issued and the
result is undefined. (The TRY function or statement
can used to catch the warning.)

 Usage result = ISNUMZ(source-string)

 source-string is the string checked to be a valid
zoned decimal string.

 Examples Expression Result
ISNUMZ("3141") 3141
ISNUMZ(" 3141") Error
ISNUMZ("7F") 76
ISNUMZ("K") -2

ORD Returns the ASCII value of a character. ORD is the

inverse function of CHR. When ORD is passed a
string of characters, ORD operates on only the first
character in the string. For single byte character
strings, ORD returns a value from -128 to 127. For
native (double byte) character strings, ORD returns
a value from 0 to 65535.

Usage ORD(string) -> number

 Examples Expression Result

ORD("0") 48
ORD("z") 122
ORD("Taurus") 84
ORD(CHR(200)) -56
ORD("") Error

PAD Returns a fixed length character string with

trailing blanks. Normally trailing blanks are
stripped from fixed length character strings before
operations are performed on them. The PAD
function is used to prevent trailing blanks from
being stripped.

The PAD function may only be used on the following
fixed length string data types:

Warehouse Expressions Built-In Functions

 Chapter Five 257

 ALLBASE CHAR
 CHAR
 IMAGE X
 ODBC CHAR
 ORACLE CHAR
 SQL CHAR

When AUTOPAD is turned on with the SET
statement, trailing blanks are always retained
when performing operations on fixed length
character strings and use of the PAD function is
unnecessary.

Usage PAD(string) -> string

 Examples The following examples assume a variable called
C6 has been defined as a CHAR(6) data type and
the value has been set to "ABCD".

 Expression Result

PAD(C6) "ABCD "
LEN(C6) 4
LEN(PAD(C6)) 6
C6 + C6 "ABCDABCD"
PAD(C6) + C6 "ABCD ABCD"

POS Returns the position of a search string within a

source string. If the search string is null, POS
returns 1. If the search string is not found, POS
returns 0.

Usage POS(search-str, source-str) -> number

 Examples Expression Result

POS(" ","Taurus Software") 7
POS("war","Taurus Software") 12
POS("sof","Taurus Software") 0
POS("", "Taurus Software") 1

REPLACE Replaces all the occurrences of a search string in a

source string with replacement string.

Built-In Functions Warehouse Expressions

258 Chapter Five

 The source-string can be of any character string or

wide character string type. If source-string is null,
null is returned. If search-string is null, the
source-string is returned. If replacement-string is
null, all occurrences of search-string are stripped
from source-string.

 Since REPLACE is also a standard SQL function, if
REPLACE is used in the FOR condition of a READ
statement on an SQL database (Oracle, SQL Server,
DB2), the REPLACE is passed on to the database
engine with the database engine doing the
evaluation of REPLACE. This may cause unexpected
results since the databases may handle the corner
conditions differently.

 Usage string = REPLACE(source-string, search-
string, replacement-string)

 Examples Exress Result

REPLACE('BANANA', 'NA', 'S') 'BASS'
REPLACE('BANANA', 'A', 'N') 'BNNNNN'
REPLACE('***', '*', '**') '******'
REPLACE('I was here', ' ', '')'Iwashere'
REPLACE('None', 'X', 'Y') 'None'
REPLACE('AbcAbc', 'Abcd', 'XYZ')'AbcAbc'

Example 7

When using REPLACE in a FOR condition so that
it's passed to the database for processing has the
following behavior when NULL is used for the
replacement string:

On Oracle:
REPLACE('Taurus', 'us', null)
results in 'Taur'

On SQL Server:
REPLACE('Taurus', 'us', null)
results in null

ROUND Rounds a number to a specified number of digits.

Warehouse Expressions Built-In Functions

 Chapter Five 259

Usage ROUND(number, num-digits) -> number

number is the number to be rounded.

num-digits indicates the number of decimal
digits to the right of the decimal to which number
is to be rounded. If num-digits is equal to zero,
number is rounded to the nearest integer. If num-
digits is negative, number is rounded to the
power of 10 indicated by negative num-digits.

 Examples Expression Result

ROUND(3.14159, 4) 3.1416
ROUND(3.14159, 2) 3.14
ROUND(3.14159, 6) 3.141590
ROUND(-3.14159, 4)) -3.1416
ROUND(7419.917, 0) 7420
ROUND(7419.917, -1) 7420
ROUND(7419.917, -2) 7400
ROUND(7419.917, -4) 10000

SCRUB Searches source-string for characters less than a

space (hex 20) or greater than a tilde (hex 7E) and
replaces each character found with the
replacement-string. To delete each binary
character, use "" for the replacement-string.

Usage SCRUB(source-str, repl-str) -> string

 Examples Expression Result

SCRUB("Taurus\r\n", "*") "Taurus**"
SCRUB("Taurus\r\n", "") "Taurus"

SIZEOF Returns the number of bytes required by a variable

or record.

Usage SIZEOF(expression) -> number

 Examples Assume the follow definitions:

DEFINE IMAGEI1VAR : IMAGE I1
DEFINE ODBCINTVAR: ODBC INTEGER
DEFINE ORACHAR20VAR: ORACLE CHAR(20)

Built-In Functions Warehouse Expressions

260 Chapter Five

DEFINE ORAREC : RECORD
 NUM : ORACLE CHAR(10)
 NAM : ORACLE CHAR(20)
 ADR : ORACLE CHAR(40)
END

Expression Result

SIZEOF(IMAGEI1VAR) 2
SIZEOF(ODBCINTVAR) 4
SIZEOF(ORACHAR20VAR) 20
SIZEOF(ORAREC) 70

SLEEP Causes the script to pause for a specified number of

seconds. SLEEP must be accessed with the CALL
statement.

Usage CALL SLEEP(seconds)

 Examples Statement

CALL SLEEP(600)

Causes the Warehouse script to sleep for 10
minutes.

STR Extracts a substring from a source string, given a

starting position and a length. The position of the
first character in a string is 1.

Usage STR(string, start, length) -> string

 Examples Expression Result

STR("ABCD", 2, 3) "BCD"
STR("ABCD", LEN("ABCD")-1,2) "CD"
STR("ABCD", 1, 0) ""

Example 4

DEFINE FC : ODBC CHAR(12) ALLOW &
 NULLS VALUE "ABCD"
PRINT STR(FC, 3, 4)

Displays the following:

Warehouse Expressions Built-In Functions

 Chapter Five 261

"CD "

STR2DATE Converts a string to a date, time, datetime, or

interval using a specified date format, or
automatically recognizes a date if no format is
specified.

STR2DATE is the inverse function of DATE2STR
(which converts a date to a string).

Usage STR2DATE(date-str) -> date

 or

STR2DATE(date-str, format-str) -> date

 date-str is a string containing the date to be
converted to a date type item.

 format-str is optional and if present contains a
string of tokens that describe the format of
date-str. The tokens are the same as those used
in the print PIC of a date item and the DATE2STR
function. The allowable tokens in format-str
are:

 A.D. BC/AD indicator with periods
 AD BC/AD indicator
 A.M. AM/PM indicator with periods
 AM AM/PM indicator
 AY 2 Character year and century where

00-99 is century 19, and A0-J9 is
century 20. e.g. A5 represents 2005

 B.C. BC/AD indicator with periods
 BC BC/AD indicator
 CC 2 digit century
 D The day of week (1-7, Sun=1,Sat=7)
 DAY The 9 character name of day of week

(SUNDAY-SATURDAY)
 DD The 2 digit day number within month

(01-31)
 DDD The 3 digit day number within year

(01-366)

Built-In Functions Warehouse Expressions

262 Chapter Five

 D* The 1 or 2 digit day number within
month (1-31)

 DY The 3 character name of day of week
(SUN-SAT)

 HH The 2 digit hour in 12 hour time (01-
12)

 HH12 The 2 digit hour in 12 hour time (01-
12)

 HH24 The 2 digit hour in 24 hour time (00-
23)

 H* The 1 or 2 digit hour in 12 hour time
(1-12)

 H*12 The 1 or 2 digit hour in 12 hour time
(1-12)

 H*24 The 1 or 2 digit hour in 24 hour time
(0-23)

 J Julian day number since January 1,
4713 BC.

 MI The 2 digit minute within the hour
(00-59)

 MM The 2 digit month number within year
(01-12)

 M* The 1 or 2 digit month number within
year (1-12)

 MON The 3 character name of month (JAN-
DEC)

 MONTH The 9 character name of month
(JANUARY-DECEMBER)

 NNN... Number of days (up to 9 Ns)
 P.M. AM/PM indicator with periods
 PM AM/PM indicator
 Q Quarter within year (1-4)
 RM Roman numeral month number within

year (I-XII) (4 characters)
 RR The last 2 digits of the year. (The

century is assumed to be 20 for years
00-49 and assumed to be 19 for years
50-99.)

 SCC 2 digit century with leading - for BC
dates

 SS The 2 digit second within the minute
(00-59)

 SSSSS The 5 digit second within the day (0-

Warehouse Expressions Built-In Functions

 Chapter Five 263

86399)
 SYYYY 4 digit year with leading sign: + for

AD dates,- for BC dates
 TTT... Fractions of seconds (up to 9 Ts)
 W The week within the month (1-5)
 WW The 2 digit week within the year (01-

53)
 Y The last digit of the year
 YY The last 2 digits of the year. If no

century is specified (CC), the current
century is assumed.

 YYY The last 3 digits of the year
 YYYY The 4 digit year
 Y,YYY Year with comma
 space Space
 : Colon
 / Virgule
 - Hyphen
 . Period
 , Comma
 ; Semicolon
 "str" Quoted string

 Date format items are case insensitive in the

STR2DATE function.

 Items are required to be the specified length.
For example the MONTH token requires a 9
character month name, so APRIL must have 4
trailing spaces.

 If items are missing, default values are used as
follows:

 Default century: 0 if BC is specified,
otherwise the current
century.

 Default year: 0 if century or BC is
specified, otherwise the
current year.

 Default month: 1 (January)
 Default day: 1
 Default hour: 0
 Default minute: 0

Built-In Functions Warehouse Expressions

264 Chapter Five

 Default second: 0

If format-str is absent, STR2DATE examines
date-str and converts it to a date if it is in a
recognizable format. It is an error if the date-str
is not in a recognizable format. The ISDATE
function can be used to determine if the string is in
a recognizable format. STR2DATE can
automatically recognize dates, times, datetimes,
and intervals. If a string can be either a date or a
time, then a date is recognized. e.g. "121314" is
interpreted as 13-Dec-2014, not 12:13:14 PM. A
two digit year from 00 to 49 is interpreted to be
from 2000 to 2049, and a two digit year from 50 to
99 is interpreted to be from 1950 to 1999.
Recognizable formats are:

Date formats:
MM/DD/RR
MM/DD/YYYY
MM/DD
MM-DD-RR
MM-DD-YYYY
MM-DD
DD-MON-RR
DD-MON-YYYY
DD-MON
RRMMDD
YYYYMMDD
Month DD, RR
Month DD, YYYY
Month DD

Time formats:
HH24:MI
HH24:MI:SS AM, PM, A.M. or P.M. may

follow
HH24:MI:SS.T*
HH24MI

Datetime formats:
datetime Date in one of the above

formats followed by a time in
one of the above formats.

Interval formats:

Warehouse Expressions Built-In Functions

 Chapter Five 265

N* HH24:MI
N* HH24:MI:SS
N* HH24:MI:SS.T*
N* Simple number is

interpreted as interval

 Examples Expression Result

STR2DATE("960401","YYMMDD") 01-APR-1996
STR2DATE("121224","YYMMDD") 24-DEC-1912
STR2DATE("121224","RRMMDD") 24-DEC-2012
STR2DATE("121224","HHMISS") 12:12:24 PM
STR2DATE("Sep 8,92","MON DD,YY") 08-SEP-1992
STR2DATE("960401") 01-APR-1996
STR2DATE("12/12/24") 12-DEC-2024
STR2DATE("12/12/1924") 12-DEC-1924
STR2DATE("121224") 12-DEC-2024
STR2DATE("121264") 12-DEC-1964
STR2DATE("12-Dec-24") 12-DEC-2024
STR2DATE("Sep 8,92") 08-SEP-1992
STR2DATE(" 960401") 01-APR-1996
STR2DATE("12-12-24") 12-DEC-2024
STR2DATE("12:12:24") 12:12:24 PM
STR2DATE("12") 12 Days
STR2DATE("12 4:14") 12 Days 4 Hours 14 Minutes
STR2DATE("9/8/92 17:21") 08-SEP-1992 5:21 PM
STR2DATE("May") * Error

STRING Converts a number to a string.

STRING is the inverse function of NUMERIC (which
converts a string to a number).

Usage STRING(number) -> string

 Examples Expression Result

STRING(25) "25"

SYSTEM Executes an operating system command. The

result is operating system dependent with a result
of 0 indicating successful command execution.

 The SYSTEM function is different from the !
statement in that the SYSTEM function executes as
part of the script, whereas the ! statement executes
immediately.

Built-In Functions Warehouse Expressions

266 Chapter Five

Warning: SYSTEM is operating system dependent.

Usage SYSTEM(string) -> number

 Examples Expression Result

SYSTEM("SETVAR TERM,HP") 0

TOKEN Parses a string and returns the Nth token within

the string.

 Usage TOKEN(source-string, token-number,

"delimiters-flags")

 source-string is the string to be parsed.

token-number is the token number to be returned
with 1 being the first token in the string. If token
number is less than 1 or greater than the number
of tokens in source-string a string of zero length is
returned.

delimiters-flags is a string enclosed in
quotation marks that indicate the parsing
delimiters and flags. The delimiters may be any
special characters such as comma, colon, semicolon
and space. In addition to special characters the S
and Q flags are available.

S flag - Indicates that leading trailing spaces are

stripped from the token.
Q flag - Indicates that tokens may be enclosed in

quotation marks.

 Examples A = 'one;two,"three,four";five, six , seven,'
B = ' alpha beta|gamma delta'

Expression Result
TOKEN(A, 1, ",") one;two
TOKEN(A, 1, ";") one
TOKEN(A, 2, ";") two,"three,four"
TOKEN(A, 2, ",q") three,four
TOKEN(A, 2, ",;") two
TOKEN(A, 4, ",;") four"
TOKEN(A, 4, ",;q") five

Warehouse Expressions Built-In Functions

 Chapter Five 267

TOKEN(A, 5, ",;q") six
TOKEN(A, 5, ",;qs") six
TOKEN(B, 1, " ")
TOKEN(B, 1, " s") alpha
TOKEN(B, 3, " s") delta
TOKEN(B, 3, " |s") gamma

TOKENCOUNT Parses a string and returns the number of tokens

in the string. TOKENCOUNT parses exactly like the
TOKEN function, but returns the number of tokens
rather than a specific token.

 Usage n = TOKENCOUNT(source-string,

"delimiters-flags")

source-string is the string to be parsed.

delimiters-flags is a constant string enclosed
in quotation marks that indicate the parsing
delimiters and flags. The delimiters may be any
special characters such as comma, colon, semicolon
and space. In addition to special characters, S and
Q flags are available.

 S flag - Indicates that leading a trailing spaces are

stripped from the token.
 Q flag - Indicates that tokens may be enclosed in

quotation marks.

 Examples A = 'one;two,"three,four";five, six ,
seven,'

B = ' alpha beta|gamma delta'

 Expression Result
TOKENCOUNT(A, ",") 5
TOKENCOUNT(A, ";") 3
TOKENCOUNT(A, ";") 3
TOKENCOUNT(A, ",q") 5
TOKENCOUNT(A, ",;") 7
TOKENCOUNT(A, ",;") 7
TOKENCOUNT(A, ",;q") 6
TOKENCOUNT(A, ",;q") 6
TOKENCOUNT(A, ",;qs") 6
TOKENCOUNT(B, " ") 7
TOKENCOUNT(B, " s") 3
TOKENCOUNT(B, " s") 3

Built-In Functions Warehouse Expressions

268 Chapter Five

TOKENCOUNT(B, " |s") 4

TRIML Strips leading (left) spaces. TRIML returns the

string parameter with all leading blanks stripped
from the front of the string. Blanks occurring after
the first non-blank character are not stripped.

 To strip both leading and trailing blanks, use the
TRIML function combined with the TRIMR function.

 Usage TRIML(string) -> string

 Examples Expression Result

TRIML(" To be ") "To be "
TRIML("Or not") "Or not"
TRIML(TRIMR(" to be ")) "to be"

TRIMR Strips trailing (right) spaces. TRIMR returns the

string parameter with all trailing blanks stripped
from the end of the string. Blanks occurring before
the last non-blank character are not stripped.

To strip both leading and trailing blanks, use the
TRIML function combined with the TRIMR function.

Usage TRIMR(string) -> string

 Examples Expression Result

TRIMR(" To be ") " To be"
TRIMR("Or not") "Or not"
TRIML(TRIMR(" to be ")) "to be"

TRUNC Truncates a number to a specified number of digits.

Usage TRUNC(number, num-digits) -> number

number is the number to be truncated.

num-digits indicates the number of decimal
digits to the right of the decimal to which number
is to be truncated. If num-digits is equal to zero,

Warehouse Expressions Built-In Functions

 Chapter Five 269

number is truncated to the nearest integer. If num-
digits is negative, number is truncated to the
power of 10 indicated by negative num-digits.

 Examples Expression Result

TRUNC(3.14159, 4) 3.1415
TRUNC(3.14159, 2) 3.14
TRUNC(3.14159, 6) 3.141590
TRUNC(-3.14159, 4)) -3.1415
TRUNC(7419.917, 0) 7419
TRUNC(7419.917, -1) 7410
TRUNC(7419.917, -2) 7400
TRUNC(7419.917, -4) 0

TRY Attempts evaluation of expression and returns a

default if the expression has a warning or error.

Usage TRY(expression, default) -> value

expression is the expression to be attempted. If
the expression is evaluated without an error or
warning, then the result of the expression is
returned by TRY.

default is the another expression containing the
default value if the evaluation of expression has
a warning or error. The default expression must be
of the same data type family as expression.

 Examples Expression Result

TRY(NUM / ZERO, -1) -1
TRY(ZFLD + 0, $NULL) ZFLD

The second example shows how to test a numeric
field that may be invalid (such as an IMAGE Z
field) for validity. If ZFLD is valid, adding 0 will
return its value. If ZFLD is invalid, adding 0 will
generate an error and the default value of TRY (in
this case $NULL) is returned.

TYPEOF Returns a character string describing the data type

of a variable or a record. For a record variable, the

Built-In Functions Warehouse Expressions

270 Chapter Five

word RECORD is returned.

Usage TYPEOF(expression) -> string

 Examples Assume the follow definitions:

DEFINE IMAGEI1VAR : IMAGE I1
DEFINE ODBCINTVAR: ODBC INTEGER
DEFINE ORACHAR20VAR: ORACLE CHAR(20)
DEFINE ORAREC : RECORD
 NUM : ORACLE CHAR(10)
 NAM : ORACLE CHAR(20)
 ADR : ORACLE CHAR(40)
END

Expression Result

TYPEOF(IMAGEI1VAR) "IMAGE I1"
TYPEOF(ODBCINTVAR) "ODBC INTEGER"
TYPEOF(ORACHAR20VAR) "ORACLE CHAR(20)"
TYPEOF(ORAREC) "RECORD"

UDPRECV Receives a datagram message from another system

using UDP. UDP is a standard network data
communications protocol similar to TCP, except
that UDP messages are considered "unreliable".
The intent of UDPRECV is to receive a "wake up"
message from a Warehouse script running on
another system.

Usage UDPRECV(port, timeout) -> string

port is the port number on which to listen for the
message. Port numbers are standard on the
internet and are assigned by The Internet Assigned
Numbers Authority. See:
http://www.iana.org/assignments/port-numbers
This must be the same port to which the UDP
message is sent and should be from 49152 through
65535.

timeout is the number of seconds to wait for a
message. A timeout of 0 indicates to wait forever.
If no message is received within timeout seconds,

Warehouse Expressions Built-In Functions

 Chapter Five 271

then a zero length string is returned to UDPRECV.

 Example Statement

SETVAR ANS = UDPRECV(54320, 600)

Listens for 10 minutes on port 54320 for a UDP
message and sets the variable ANS to the message
received.

UDPSEND Sends a datagram message to another system using

UDP. UDP is a standard network data
communications protocol similar to TCP, except
that UDP messages are considered "unreliable".
The intent of UDPSEND is to send a "wake up"
message to a Warehouse script running on another
system. UDPSEND must be accessed with the CALL
statement.

Usage CALL UDPSEND(system, port, message)

system is the name or IP address of the system to
which the message is to be sent.

port is the port number on the remote system to
which the message is to be sent. Port numbers are
standard on the internet and are assigned by The
Internet Assigned Numbers Authority. See:
http://www.iana.org/assignments/port-numbers
This must be the same port to which the UDP
message is sent and should be from 49152 through
65535.

message is a string of characters to be sent to the
remote system.

 Example Statement

CALL UDPSEND("UXSYS4", 54320, "WAKE")

Sends the message WAKE to the remote system
UXSYS4 using port number 54320.

Built-In Functions Warehouse Expressions

272 Chapter Five

UPS Upshifts a string. UPS converts all lowercase

characters in a given string to uppercase
characters.

To downshift a string use the DWNS function.

Usage UPS(string) -> string

 Examples Expression Result

UPS("Taurus") "TAURUS"
UPS("software") "SOFTWARE"

YYYYMMDD Calculates a numeric date in YYYYMMDD format

given a day number since Monday, December 31,
1900. The YYYYMMDD function accepts negative day
numbers for dates prior to December 31, 1900.

YYYYMMDD is the inverse function of DAYNUM.

Usage YYYYMMDD(day-number) -> yyyymmdd-number

 Examples Expression Result

YYYYMMDD(32327) 19890704
YYYYMMDD(-45469) 17760704
YYYYMMDD(1) 19010101

Data Types

 Chapter Six 273

Chapter Six

Data Types

 Data Types

274 Chapter Six

Chapter Overview This chapter describes in detail each of the data
types supported by Warehouse. Every database
supported by Warehouse comes with data types
used by that database. For Warehouse to have the
ability to manage your data, Warehouse must be
able to operate on the data given to it by the
database system. Warehouse provides the ability
to operate on any data type it recognizes and to
convert fields from one data type to another.

Data Types Allbase Data Types

 Chapter Six 275

Allbase Data Types The following data types originated on the HP 3000
database management system Allbase. Allbase is a
"standard" SQL database management system, and
hence the Allbase data types are all based on SQL
data types.

 Supported Allbase data types are as follows:

 BINARY Fixed length binary data
CHAR Fixed length character

data
DECIMAL Fixed point numeric data
DOUBLE PRECISION 64 bit IEEE floating

point data
FLOAT IEEE floating point data
INTEGER 32 bit integer data
REAL 32 bit IEEE floating

point data
SMALLINT 16 bit integer data
VARBINARY Variable length binary

data
VARCHAR Variable length character

data

Null Values Allbase data types support null values. To indicate
a data type that allows null values, ALLOW NULLS
is appended to the data type specification.
Example:

DEFINE CV : ALLBASE CHAR(20) ALLOW NULLS

 The following is a detailed description of each of
the Allbase data types supported by Warehouse.

ALLBASE BINARY The ALLBASE BINARY data type represents fixed
length binary data.

Syntax ALLBASE BINARY(n)

n specifies the length in bytes of the field. n must
be from 1 to 3996.

ALLOW NULLS may be appended to the data type

Allbase Data Types Data Types

276 Chapter Six

specification to allow storage of a null value.

Display ALLBASE BINARY fields are printed in hexadecimal
using a default print width of 2 * (n + 1).

Family Binary, fixed length

Technical The byte layout of ALLBASE BINARY items is as
follows:

Byte 1 Data byte 1

Byte 2 Data byte 2

Byte n Data byte n

 Size: n bytes

Examples DEFINE BIN : ALLBASE BINARY(20)
DEFINE BIGBIN : ALLBASE BINARY(2000)

 Defines BIN as a 20 byte binary field. Defines
BIGBIN as a 2000 byte binary field.

ALLBASE CHAR The ALLBASE CHAR data type represents fixed
length character data.

Syntax ALLBASE CHAR(n)

n specifies the length in bytes of the field. n must
be from 1 to 3996.

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Display The default print width of ALLBASE CHAR fields is
the width of the field, or n.

Family Character string, fixed length

Data Types Allbase Data Types

 Chapter Six 277

Technical The byte layout of ALLBASE CHAR items is as
follows:

Byte 1 Character 1

Byte 2 Character 2

Byte n Character n

 Size: n bytes

Examples DEFINE CH : ALLBASE CHAR(20)
DEFINE BIGCH : ALLBASE CHAR(2000)

 Defines CH as a 20 byte fixed length character
string. Defines BIGCH as a 2000 byte fixed length
character string.

ALLBASE DECIMAL The ALLBASE DECIMAL data type represents fixed
point numeric data.

Syntax DECIMAL(n) or DECIMAL(n,m)
DEC(n) or DEC(n,m)
NUMERIC(n) or NUMERIC(n,m)

The keywords DECIMAL, DEC, and NUMERIC have
identical meanings and may be used
interchangeably.

n specifies the maximum number of digits the field
may hold, including digits to the right of the
decimal point. n must be from 1 to 15.

If m is specified, m indicates the number of digits to
the right of the decimal point the field may hold. If
m is not specified, m is assumed to be 0. m must be
from 0 to n.

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Allbase Data Types Data Types

278 Chapter Six

Display The default print picture of ALLBASE DECIMAL
fields is:

 PIC "-(n-m)9.9(s)" for m > 0
 PIC "-(n)9" for m = 0

Family Numeric

Technical The byte layout of an ALLBASE DECIMAL field
depends on the size of n. If n is less than 8,
ALLBASE DECIMAL fields require 4 bytes. If n is
greater than or equal to 8, ALLBASE DECIMAL
fields require 8 bytes.

Byte layout for n from 1 to 7:

Byte 1 Digit n - 6 Digit n - 5

Byte 2 Digit n - 4 Digit n - 3

Byte 3 Digit n - 2 Digit n - 1

Byte 4 Digit n Sign

 Size: 4 bytes

Byte layout for n from 8 to 15:

Byte 1 Digit n - 14 Digit n - 13

Byte 2 Digit n - 12 Digit n - 11

Byte 3 Digit n - 10 Digit n - 9

Byte 4 Digit n - 8 Digit n - 7

Byte 5 Digit n - 6 Digit n - 5

Byte 6 Digit n - 4 Digit n - 3

Byte 7 Digit n - 2 Digit n - 1

Data Types Allbase Data Types

 Chapter Six 279

Byte 8 Digit n Sign

 Size: 8 bytes

 Each digit of the number requires 4 bits and 4
bits is required for the sign.
Sign is defined as follows:
 1111 = Unsigned
 1100 = Positive
 1101 = Negative

Range The range of ALLBASE DECIMAL items is:

Maximum: +99..99 with n - m digits
Minimum: -99..99 with n - m digits

Examples DEFINE DEC : ALLBASE DECIMAL(6)
DEFINE AMT : ALLBASE DEC(10,2)

 Defines DEC as a 4 byte fixed decimal integer that
can hold up to 6 digits. The default print picture
for DEC is "-(6)9". Defines AMT as an 8 byte fixed
decimal integer that can hold up to 10 digits: 8
digits to the left of the decimal point, and 2 digits
to the right of the decimal point. The default print
picture for AMT is "-(8)9.9(2)"

ALLBASE DOUBLE
PRECISION

The ALLBASE DOUBLE PRECISION data type
represents an 8 byte IEEE floating point number.

Syntax ALLBASE DOUBLE PRECISION
 or
ALLBASE FLOAT
 or
ALLBASE FLOAT(n) where n >= 25 and n <= 53

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Display The default print picture of ALLBASE DOUBLE
PRECISION fields is:

Allbase Data Types Data Types

280 Chapter Six

 PIC "-(9)9.9(6)"

Family Numeric, floating point

Technical The byte layout of the ALLBASE DOUBLE
PRECISION data type is as follows:

Byte 1 s e0 e1 e2 e3 e4 e5 e6
Byte 2 e7 e8 e9 e10 f0 f1 f2 f3
Byte 3 f4 f5 f6 f7 f8 f9 f10 f11
Byte 4 f12 f13 f14 f15 f16 f17 f18 f19
Byte 5 f20 f21 f22 f23 f24 f25 f26 f27
Byte 6 f28 f29 f30 f31 f32 f33 f34 f35
Byte 7 f36 f37 f38 f39 f40 f41 f42 f43
Byte 8 f44 f45 f46 f47 f48 f49 f50 f51

 Size: 8 bytes
 s = sign bit, 1 = negative

e = exponent, 11 bits, biased by 1023
f = fraction, 52 bits, implicit leading 1

 Value: (-1)s * 2(e - 1023) * (1.f)

 Notes: Exponents of all 0's and all 1's are reserved.
An exponent with all 0's and a fraction of all 0's
represents the number 0. An exponent of all 0's
and a non-zero fraction represents a
denormalized number. An exponent of all 1's
and a fraction of all 0's represents infinity. An
exponent of all 1's and a non-zero fraction
represents a NaN (not a number).

Range The range of ALLBASE DOUBLE PRECISION items

is:

Maximum: +1.797693134862318 • 10308
Minimum: -1.797693134862318 • 10308
Minimum > 0: 4.940656458412465 • 10-324

Examples DEFINE FLT : ALLBASE DOUBLE PRECISION
DEFINE AMT : ALLBASE FLOAT(53)

Data Types Allbase Data Types

 Chapter Six 281

 Defines FLT as an IEEE 8 byte floating point
number. Defines AMT as an IEEE 8 byte floating
point number.

ALLBASE FLOAT The ALLBASE FLOAT data type represents an IEEE
floating point number.

Syntax ALLBASE FLOAT(n) or ALLBASE FLOAT

n represents the number of bits of precision in the
mantissa of the floating point number. If n is from
1 to 24, n is interpreted as 24 and the field is
defined as a REAL field. If n is from 25 to 53, n is
interpreted as 53 and the field is defined as a
ALLBASE DOUBLE PRECISION field.

n must be from 1 to 53. If n is not specified, the
default of 53 is used.

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Display The default print picture of ALLBASE FLOAT fields
is:

 PIC "-(9)9.9(6)"

Family Numeric, floating point

Technical The byte layout of the ALLBASE FLOAT data type
depends on the size of n. If n is from 1 to 24, the
field is interpreted as a REAL field; see the
ALLBASE REAL section for details. If n is from 25
to 53, the field is interpreted as a DOUBLE
PRECISION field; see the ALLBASE DOUBLE
PRECISION section for details.

Examples DEFINE RL : ALLBASE FLOAT(24)
DEFINE FLT : ALLBASE FLOAT(53)
DEFINE AMT : ALLBASE FLOAT

 Defines RL as an IEEE 4 byte floating point
number. Defines FLT and AMT as IEEE 8 byte

Allbase Data Types Data Types

282 Chapter Six

floating point numbers.

ALLBASE INTEGER The ALLBASE INTEGER data type represents a 4
byte binary signed integer in twos-complement
form.

Syntax ALLBASE INTEGER

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Display The default print picture of ALLBASE INTEGER
fields is:

 PIC "-(10)9"

Family Numeric, binary integer

Technical The byte layout of the ALLBASE INTEGER data
type is as follows:

Byte 1 s b0 b1 b2 b3 b4 b5 b6
Byte 2 b7 b8 b9 b10 b11 b12 b13 b14
Byte 3 b15 b16 b17 b18 b19 b20 b21 b22
Byte 4 b23 b24 b25 b26 b27 b28 b29 b30

 Size: 4 bytes
 s = sign bit, 1 = negative

bn = b0 is the most significant bit and b30 is the
least significant bit

Range The range of INTEGER items is:

Maximum: +2147483647
Minimum: -2147483648

Examples DEFINE INT : ALLBASE INTEGER

 Defines INT as a 4 byte binary integer.

ALLBASE REAL The ALLBASE REAL data type represents a 4 byte
IEEE floating point number.

Data Types Allbase Data Types

 Chapter Six 283

Syntax ALLBASE REAL

 or
ALLBASE FLOAT(n) where n <= 24

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Display The default print picture of ALLBASE REAL fields
is:

 PIC "-(9)9.9(6)"

Family Numeric, floating point

Technical The byte layout of the ALLBASE REAL data type is
as follows:

Byte 1 s e0 e1 e2 e3 e4 e5 e6
Byte 2 e7 f0 f1 f2 f3 f4 f5 f6
Byte 3 f7 f8 f9 f10 f11 f12 f13 f14
Byte 4 f15 f16 f17 f18 f19 f20 f21 f22

 Size: 4 bytes
 s = sign bit, 1 = negative

e = exponent, 8 bits, biased by 127
f = fraction, 23 bits, implicit leading 1

 Value: (-1)s * 2(e - 127) * (1.f)

 Notes: Exponents of all 0's and all 1's are reserved.
An exponent with all 0's and a fraction of all 0's
represents the number 0. An exponent of all 0's
and a non-zero fraction represents a
denormalized number. An exponent of all 1's
and a fraction of all 0's represents infinity. An
exponent of all 1's and a non-zero fraction
represents a NaN (not a number).

Range The range of ALLBASE REAL items is:

Maximum: +3.402823 • 1038
Minimum: -3.402823 • 1038
Minimum > 0: +1.175495 • 10-38

Allbase Data Types Data Types

284 Chapter Six

Examples DEFINE FLT : ALLBASE REAL

DEFINE AMT : ALLBASE FLOAT(24)

 Defines FLT as an IEEE 4 byte floating point
number. Defines AMT as an IEEE 4 byte floating
point number.

ALLBASE SMALLINT The ALLBASE SMALLINT data type represents a 2
byte binary signed integer in twos-complement
form.

Syntax ALLBASE SMALLINT

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Display The default print picture of ALLBASE SMALLINT
fields is:

 PIC "-(5)9"

Family Numeric, binary integer

Technical The byte layout of the ALLBASE SMALLINT data
type is as follows:

Byte 1 s b0 b1 b2 b3 b4 b5 b6
Byte 2 b7 b8 b9 b10 b11 b12 b13 b14

 Size: 2 bytes
 s = sign bit, 1 = negative

bn = b0 is the most significant bit and b14 is the
least significant bit.

Range The range of ALLBASE SMALLINT items is:

Maximum: +32767
Minimum: -32768

Examples DEFINE INT : ALLBASE SMALLINT

 Defines INT as a 2 byte binary integer.

Data Types Allbase Data Types

 Chapter Six 285

ALLBASE VARBINARY The ALLBASE VARBINARY data type represents

variable length binary data.

Syntax ALLBASE VARBINARY(n)

n specifies the maximum length in bytes of the
field. n must be from 1 to 3996.

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Display ALLBASE VARBINARY fields are printed in
hexadecimal using a default print width of
2 * (n + 1).

Family Binary, variable length

Technical The byte layout of ALLBASE VARBINARY items is
as follows:

Byte 1 Length byte 1
 H
Byte 2 Length byte 2

Byte 3 Length byte 3

Byte 4 Length byte 4
 L
Byte 5 Data byte 1

Byte 6 Data byte 2

Byte n + 3 Data byte n - 1

Byte n + 4 Data byte n

 Size: n + 4 bytes
 H= High order bit

L= Low order bit

Allbase Data Types Data Types

286 Chapter Six

Examples DEFINE BIN : ALLBASE VARBINARY(20)
DEFINE BIGBIN : ALLBASE VARBINARY(2000)

 Defines BIN as a variable length binary string
capable of holding up to 20 bytes. Defines BIGBIN
as a variable length binary string capable of
holding up to 2000 bytes.

ALLBASE VARCHAR The ALLBASE VARCHAR data type represents
variable length character data.

Syntax ALLBASE VARCHAR(n)

n specifies the maximum length in bytes of the
field. n must be from 1 to 3996.

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Display The default print width of ALLBASE VARCHAR
fields is the width of the field, or n.

Family Character string, variable length

Technical The byte layout of ALLBASE VARCHAR items is as
follows:

Byte 1 Length byte 1
 H
Byte 2 Length byte 2

Byte 3 Length byte 3

Byte 4 Length byte 4
 L
Byte 5 Character 1

Byte 6 Character 2

Byte n + 3 Character n - 1

Byte n + 4 Character n

Data Types Allbase Data Types

 Chapter Six 287

 Size: n + 4 bytes
 H= High order bit

L= Low order bit

Examples DEFINE CH : ALLBASE VARCHAR(20)

DEFINE BIGCH : ALLBASE VARCHAR(2000)

 Defines CH as a variable length character string
capable of holding up to 20 characters. Defines
BIGCH as a variable length character string capable
of holding up to 2000 characters.

IMAGE Data Types Data Types

288 Chapter Six

IMAGE Data Types The following data types originated on the HP 3000
database management system IMAGE.

 IMAGE data types are specified as follows:

 IMAGE [count] type length

 or more simply

 [count] type length

 Where count is the number of the times the item
repeats, as in an array. The default count is 1.
The type is the item type and must be one of the
types listed below. The length is the length of the
item and its exact meaning depends upon type.

Supported IMAGE data types are:

 E IEEE floating point data
I Binary integer data
J Binary integer data
K Unsigned binary integer data
P Packed decimal data
R HP3000 floating point data
U Uppercase character data
X Character data
Z Zoned decimal data

Null Values Image data types do not support null values.

 The following is a detailed description of each of

the IMAGE data types supported by Warehouse.

IMAGE E2
IMAGE_ E2

The IMAGE E2 data type represents a 4 byte IEEE
floating point number. IMAGE_ uses little-endian
storage.

Syntax IMAGE E2 or E2
IMAGE kE2 or kE2

Where k represents the number of items. When k

Data Types IMAGE Data Types

 Chapter Six 289

is greater than 1, an array of k IMAGE E2 items is
specified.

Display The default print picture of IMAGE E2 fields is:

 PIC "-(9)9.9(6)"

Family Numeric, floating point

Technical The byte layout of the IMAGE E2 data type is as
follows:

Byte 1 s e0 e1 e2 e3 e4 e5 e6
Byte 2 e7 f0 f1 f2 f3 f4 f5 f6
Byte 3 f7 f8 f9 f10 f11 f12 f13 f14
Byte 4 f15 f16 f17 f18 f19 f20 f21 f22

 Size: 4 bytes
 s = sign bit, 1 = negative

e = exponent, 8 bits, biased by 127
f = fraction, 23 bits, implicit leading 1

 Value: (-1)s * 2(e - 127) * (1.f)

 Notes: Exponents of all 0's and all 1's are reserved.
An exponent with all 0's and a fraction of all 0's
represents the number 0. An exponent of all 0's
and a non-zero fraction represents a
denormalized number. An exponent of all 1's
and a fraction of all 0's represents infinity. An
exponent of all 1's and a non-zero fraction
represents a NaN (not a number).

Range The range of IMAGE E2 items is:

Maximum: +3.402823 • 1038
Minimum: -3.402823 • 1038
Minimum > 0: +1.175495 • 10-38

Examples DEFINE FLT : E2
DEFINE FARRAY : IMAGE 12E2

 Defines FLT as an IEEE 4 byte floating point
number. Defines FARRAY as an array of 12 IMAGE

IMAGE Data Types Data Types

290 Chapter Six

E2 numbers.

IMAGE E4
IMAGE_ E4

The IMAGE E4 data type represents an 8 byte
IEEE floating point number. IMAGE_ uses little-
endian storage.

Syntax IMAGE E4 or E4
IMAGE kE4 or kE4

Where k represents the number of items. When k
is greater than 1, an array of k IMAGE E4 items is
specified.

Display The default print picture of IMAGE E4 fields is:

 PIC "-(9)9.9(6)"

Family Numeric, floating point

Technical The byte layout of the IMAGE E4 data type is as
follows:

Byte 1 s e0 e1 e2 e3 e4 e5 e6
Byte 2 e7 e8 e9 e10 f0 f1 f2 f3
Byte 3 f4 f5 f6 f7 f8 f9 f10 f11
Byte 4 f12 f13 f14 f15 f16 f17 f18 f19
Byte 5 f20 f21 f22 f23 f24 f25 f26 f27
Byte 6 f28 f29 f30 f31 f32 f33 f34 f35
Byte 7 f36 f37 f38 f39 f40 f41 f42 f43
Byte 8 f44 f45 f46 f47 f48 f49 f50 f51

 Size: 8 bytes
 s = sign bit, 1 = negative

e = exponent, 11 bits, biased by 1023
f = fraction, 52 bits, implicit leading 1

 Value: (-1)s * 2(e - 1023) * (1.f)

 Notes: Exponents of all 0's and all 1's are reserved.
An exponent with all 0's and a fraction of all 0's
represents the number 0. An exponent of all 0's
and a non-zero fraction represents a

Data Types IMAGE Data Types

 Chapter Six 291

denormalized number. An exponent of all 1's
and a fraction of all 0's represents infinity. An
exponent of all 1's and a non-zero fraction
represents a NaN (not a number).

Range The range of E4 items is:

Maximum: +1.797693134862318 • 10308
Minimum: -1.797693134862318 • 10308
Minimum > 0: 4.940656458412465 • 10-324

Examples DEFINE FLT : E4
DEFINE FARRAY : 12E4

 Defines FLT as an IEEE 8 byte floating point
number. Defines FARRAY as an array of 12 IMAGE
E4 numbers.

IMAGE I1
IMAGE J1
IMAGE_ I1
IMAGE_ J1

The IMAGE I1 data type and the IMAGE J1 data
type are considered identical by Warehouse and
represent a 2 byte binary signed integer in twos-
complement form. IMAGE_ uses little-endian
storage.

Syntax IMAGE I1 or I1
IMAGE kI1 or kI1
IMAGE J1 or J1
IMAGE kJ1 or kJ1

Where k represents the number of items. When k
is greater than 1, an array of k IMAGE I1/J1 items
is specified.

Display The default print picture of IMAGE I1 fields is:

 PIC "-(5)9"

Family Numeric, binary integer

Technical The byte layout of the IMAGE I1 and IMAGE J1
data types are as follows:

Byte 1 s H

IMAGE Data Types Data Types

292 Chapter Six

Byte 2 L

 Size: 2 bytes
 s = sign bit, 1 = negative

H= High order bit
L= Low order bit

Range The range of IMAGE I1 and IMAGE J1 items is:

Maximum: +32767
Minimum: -32768

Examples DEFINE INT : IMAGE I1
DEFINE IARRAY : IMAGE 12J1

 Defines INT as a 2 byte binary integer. Defines
IARRAY as an array of 12 J1 numbers.

IMAGE I2
IMAGE J2
IMAGE_ I2
IMAGE_ J2

The IMAGE I2 data type and the IMAGE J2 data
type are considered identical by Warehouse and
represent a 4 byte binary signed integer in twos-
complement form. IMAGE_ uses little-endian
storage.

Syntax IMAGE I2 or I2
IMAGE kI2 or kI2
IMAGE J2 or J2
IMAGE kJ2 or kJ2

Where k represents the number of items. When k
is greater than 1, an array of k IMAGE I2/J2 items
is specified.

Display The default print picture of IMAGE I2 and IMAGE
J2 fields is:

 PIC "-(10)9"

Family Numeric, binary integer

Technical The byte layout of the IMAGE I2 and IMAGE J2
data types are as follows:

Data Types IMAGE Data Types

 Chapter Six 293

Byte 1 s H
Byte 2
Byte 3
Byte 4 L

 Size: 4 bytes
 s = sign bit, 1 = negative

H= High order bit
L= Low order bit

Range The range of IMAGE I2 and IMAGE J2 items is:

Maximum: +2147483647
Minimum: -2147483648

Examples DEFINE INT : IMAGE I2
DEFINE IARRAY : IMAGE 12J2

 Defines INT as a 4 byte binary integer. Defines
IARRAY as an array of 12 IMAGE J2 numbers.

IMAGE In
IMAGE Jn
IMAGE Kn

The data types IMAGE In, IMAGE Jn, and IMAGE
Kn data types where n is from 3 to 8 are
considered identical by Warehouse and represent
binary signed integers in twos-complement form.

Syntax IMAGE In or In
IMAGE kIn or kIn
IMAGE Jn or Jn
IMAGE kJn or kJn
IMAGE Kn or Kn
IMAGE kKn or kKn

Where n represents the number of 16 bit words and
k represents the number of items. The value of n
must be from 1 to 8. When k is greater than 1, an
array of k IMAGE In/Jn items is specified.

Display The default print picture of IMAGE In, IMAGE Jn
and IMAGE Kn fields is:

IMAGE Data Types Data Types

294 Chapter Six

 IMAGE I3: PIC "-(15)9"
 IMAGE I4: PIC "-(19)9"
 IMAGE I5: PIC "-(24)9"
 IMAGE I6: PIC "-(29)9"
 IMAGE I7: PIC "-(34)9"
 IMAGE I8: PIC "-(39)9"

Family Numeric, binary integer

Technical The byte layout of the IMAGE In, IMAGE Jn and
IMAGE Kn data types are as follows:

Byte 1 s H
Byte 2

Byte 2n-1
Byte 2n L

Size: 2n bytes

 s = sign bit, 1 = negative
H= High order bit
L= Low order bit

Range The range of IMAGE In, IMAGE Jn and IMAGE Kn

items is:

Maximum values are:
 I3: +140737488355327
 I4: +9223372036854775807
 I5: +604462909807314587353087
 I6: +39614081257132168796771975167
 I7: +2596148429267413814265248164610047
 I8:+170141183460469231731687303715884105727

 Minimum values are:
 I3: -140737488355328
 I4: -9223372036854775808
 I5: -604462909807314587353088
 I6: -39614081257132168796771975168
 I7: -2596148429267413814265248164610048
 I8:-170141183460469231731687303715884105728

Examples DEFINE INT : IMAGE I4
DEFINE IARRAY : IMAGE 12J4

Data Types IMAGE Data Types

 Chapter Six 295

 Defines INT as a 8 byte binary integer. Defines
IARRAY as an array of 12 IMAGE J4 numbers.

IMAGE K1
IMAGE_ K1

The IMAGE K1 data type represents a 2 byte binary
unsigned integer in twos-complement form.
IMAGE_ uses little-endian storage.

Syntax IMAGE K1 or K1
IMAGE kK1 or kK1

Where k represents the number of items. When k
is greater than 1, an array of k IMAGE K1 items is
specified.

Display The default print picture of IMAGE K1 fields is:

 PIC "Z(5)9"

Family Numeric, binary integer

Technical The byte layout of the IMAGE K1 data type is as
follows:

Byte 1 H
Byte 2 L

 Size: 2 bytes
 H= High order bit

L= Low order bit

Range The range of IMAGE K1 items is:

Maximum: +65535
Minimum: 0

Examples DEFINE INT : IMAGE K1
DEFINE IARRAY : IMAGE 12K1

 Defines INT as a 2 byte unsigned binary integer.
Defines IARRAY as an array of 12 IMAGE K1
numbers.

IMAGE Data Types Data Types

296 Chapter Six

IMAGE K2
IMAGE_ K2

The IMAGE K2 data type represents a 4 byte binary
unsigned integer in twos-complement form.
IMAGE_ uses little-endian storage.

Syntax IMAGE K2 or K2
IMAGE kK2 or kK2

Where k represents the number of items. When k
is greater than 1, an array of k IMAGE K2 items is
specified.

Display The default print picture of IMAGE K2 fields is:

 PIC "Z(10)9"

Family Numeric, binary integer

Technical The byte layout of the IMAGE K2 data type is as
follows:

Byte 1 H
Byte 2
Byte 3
Byte 4 L

 Size: 4 bytes
 H= High order bit

L= Low order bit

Range The range of IMAGE K2 items is:

Maximum: +4294967295
Minimum: 0

Examples DEFINE INT : IMAGE K2
DEFINE IARRAY : IMAGE 12K2

 Defines INT as a 4 byte unsigned binary integer.
Defines IARRAY as an array of 12 IMAGE K2
numbers.

Data Types IMAGE Data Types

 Chapter Six 297

IMAGE P The IMAGE P data type is used to represent fixed
length packed decimal integers with no decimal
point.

Syntax IMAGE Pn or Pn
IMAGE kPn or kPn

Where n is an even number that represents one
more than the number of digits the field can
represent. For example, an IMAGE P8 field can
represent 7 digits and a sign.

Where k represents the number of items. When k
is greater than 1, an array of k IMAGE Pn items is
specified.

Display The default print picture of IMAGE P fields is:

 PIC "-(n-1)9"

Family Numeric, packed decimal integer

Technical The byte layout of an IMAGE P data type is as
follows:

Byte 1 Digit 1 Digit 2

Byte 2 Digit 3 Digit 4

Byte n / 2 Digit n-1 Sign

 Size: n / 2 bytes
 Each digit of the number requires 4 bits and 4

bits is required for the sign.
Sign is defined as follows:
 1111 = Unsigned (hexadecimal F)
 1100 = Positive (hexadecimal C)
 1101 = Negative (hexadecimal D)

Range The range of IMAGE Pn items is:

IMAGE Data Types Data Types

298 Chapter Six

Maximum: +99..99 with n-1 digits
Minimum: -99..99 with n-1 digits

Examples DEFINE PCK : P12
DEFINE PARRAY : IMAGE 12P4

 Defines PCK as a 6 byte packed decimal integer
capable of holding up to 11 digit numbers. Defines
PARRAY as an array of 12 IMAGE P4 numbers, each
capable of holding up to 3 digits.

IMAGE R2
IMAGE_ R2

The IMAGE R2 data type represents a 4 byte
HP3000 floating point number. IMAGE_ uses little-
endian storage.

Syntax IMAGE R2 or R2
IMAGE kR2 or kR2

Where k represents the number of items. When k
is greater than 1, an array of k IMAGE R2 items is
specified.

Display The default print picture of IMAGE R2 fields is:

 PIC "-(9)9.9(6)"

Family Numeric, floating point

Technical The byte layout of the IMAGE R2 data type is as
follows:

Byte 1 s e0 e1 e2 e3 e4 e5 e6
Byte 2 e7 e8 f0 f1 f2 f3 f4 f5
Byte 3 f6 f7 f8 f9 f10 f11 f12 f13
Byte 4 f14 f15 f16 f17 f18 f19 f20 f21

 Size: 4 bytes
 s = sign bit, 1 = negative

e = exponent, 9 bits, biased by 256
f = fraction, 22 bits, implicit leading 1

 Value: (-1)s * 2(e - 256) * (1.f)

Data Types IMAGE Data Types

 Chapter Six 299

 Notes: All bits 0 represents 0.

Range The range of IMAGE R2 items is:

Maximum: +1.157920 • 1077
Minimum: -1.157920 • 1077
Minimum > 0: +8.636169 • 10-78

Examples DEFINE FLT : R2
DEFINE FARRAY : IMAGE 12R2

 Defines FLT as an HP3000 4 byte floating point
number. Defines FARRAY as an array of 12 IMAGE
R2 numbers.

IMAGE R4
IMAGE_ R4

The IMAGE R4 data type represents an 8 byte
HP3000 floating point number. IMAGE_ uses little-
endian storage.

Syntax IMAGE R4 or R4
IMAGE kR4 or kR4

Where k represents the number of items. When k
is greater than 1, an array of k IMAGE R4 items is
specified.

Display The default print picture of IMAGE R4 fields is:

 PIC "-(9)9.9(6)"

Family Numeric, floating point

Technical The byte layout of the IMAGE R4 data type is as
follows:

Byte 1 s e0 e1 e2 e3 e4 e5 e6
Byte 2 e7 e8 f0 f1 f2 f3 f4 f5
Byte 3 f6 f7 f8 f9 f10 f11 f12 f13
Byte 4 f14 f15 f16 f17 f18 f19 f20 f21
Byte 5 f22 f23 f24 f25 f26 f27 f28 f29
Byte 6 f30 f31 f32 f33 f34 f35 f36 f37

IMAGE Data Types Data Types

300 Chapter Six

Byte 7 f38 f39 f40 f41 f42 f43 f44 f45
Byte 8 f46 f47 f48 f49 f50 f51 f52 f53

 Size: 8 bytes
 s = sign bit, 1 = negative

e = exponent, 9 bits, biased by 256
f = fraction, 54 bits, implicit leading 1

 Value: (-1)s * 2(e - 256) * (1.f)

 Notes: All bits 0 represents 0.

Range The range of IMAGE R4 items is:

Maximum: +1.157920892373161 • 1077
Minimum: -1.157920892373161 • 1077
Minimum > 0: +8.636168555094445 • 10-78

Examples DEFINE FLT : R4
DEFINE FARRAY : IMAGE 12R4

Defines FLT as an HP3000 8 byte floating point
number. Defines FARRAY as an array of 12 R4
IMAGE numbers.

IMAGE U The IMAGE U data type is used to represent fixed
length uppercase character data. Data stored into
a U field is first converted to uppercase by
Warehouse.

Syntax IMAGE Un or Un
IMAGE kUn or kUn

Where n represents the number of characters the
field can represent.

Where k represents the number of items. When k
is greater than 1, an array of k IMAGE Un items is
specified.

Display The default print width of IMAGE U fields is the
width of the field, or n.

Data Types IMAGE Data Types

 Chapter Six 301

Family Character string, fixed length

Technical The byte layout of IMAGE U type items is as
follows:

Byte 1 Uppercase character 1

Byte 2 Uppercase character 2

Byte n Uppercase character n

 Size: n bytes
 Each character requires 1 byte.

Examples DEFINE CHAR : U12

DEFINE UARRAY : IMAGE 12U4

 Defines CHAR as a 12 character field of uppercase
characters. Defines UARRAY as an array of 12 U4
IMAGE fields.

IMAGE X The IMAGE X data type is used to represent fixed
length character data.

Syntax IMAGE Xn or Xn
IMAGE kXn or kXn

Where n represents the number of characters the
field can represent.

Where k represents the number of items. When k
is greater than 1, an array of k IMAGE Xn items is
specified.

Display The default print width of IMAGE X fields is the
width of the field, or n.

Family Character string, fixed length

Technical The byte layout of IMAGE X type items is as
follows:

IMAGE Data Types Data Types

302 Chapter Six

Byte 1 Character 1

Byte 2 Character 2

Byte n Character n

 Size: n bytes

 Each character requires 1 byte.

Examples DEFINE CHAR : X12
DEFINE XARRAY : IMAGE 12X4

 Defines CHAR as 12 character field. Defines
XARRAY as an array of 12 IMAGE X4 fields.

IMAGE Z The IMAGE Z data type is used to represent fixed
length zoned decimal integers with no decimal
point.

Syntax IMAGE Zn or Zn
IMAGE kZn or kZn

where n represents the number of digits the field
can represent. For example, an IMAGE Z8 field can
represent 8 digits and a sign.

Where k represents the number of items. When k
is greater than 1, an array of k IMAGE Zn items is
specified.

Display The default print picture of IMAGE Z fields is:

 PIC "-(n)9"

Family Numeric, zoned decimal integer

Technical The byte layout of IMAGE Z type items is as
follows:

Data Types IMAGE Data Types

 Chapter Six 303

Byte 1 Digit 1

Byte 2 Digit 2

Byte n Digit n and sign

 Size: n bytes
 Each digit of the number requires 1 byte with

the last byte containing both the last digit of the
number and the sign. The last byte indicates
the sign and last digit as follows:

 Byte n Unsigned Positive Negative

0 0 { }
1 1 A J
2 2 B K
3 3 C L
4 4 D M
5 5 E N
6 6 F O
7 7 G P
8 8 H Q
9 9 I R

Range The range of IMAGE Zn items is:

Maximum: +99..99 with n digits
Minimum: -99..99 with n digits

Examples DEFINE ZON : Z12
DEFINE ZARRAY : IMAGE 12Z4

 Defines ZON as a zoned decimal integer capable of
holding up to 12 digits. Defines ZARRAY as an
array of 12 IMAGE Z4 numbers, each capable of
holding up to 4 digits.

ODBC Data Types Data Types

304 Chapter Six

ODBC Data Types The following data types are based on the Open
Database Connectivity standard from Microsoft
Corporation.

 Supported ODBC data types are as follows:

 BIGINT 64 bit integer data
BINARY Fixed length binary data
BIT Logical (True/False) data
CHAR Fixed length character

data
DATE Calendar date
DECIMAL Fixed point numeric data
DOUBLE PRECISION 64 bit IEEE floating

point data
INTEGER 32 bit integer data
LONG VARBINARY Long variable length

binary data
LONG VARCHAR Long variable length

character data
NUMERIC Alias for DECIMAL
REAL 32 bit IEEE floating

point data
SMALLINT 16 bit integer data
TIME Time of day
TIMESTAMP Calendar date and time
TINYINT 8 bit integer data
UNIQUEIDENTIFIER 16 byte unique ID.
VARBINARY Variable length binary

data
VARCHAR Variable length character

data

Null Values ODBC data types support null values. To indicate
a data type that allows null values, ALLOW NULLS
is appended to the data type specification.
Example:

DEFINE CV : ODBC CHAR(20) ALLOW NULLS

 The following is a detailed description of each of
the ODBC data types supported by Warehouse.

Data Types ODBC Data Types

 Chapter Six 305

ODBC BIGINT The ODBC BIGINT data type represents an 8 byte
binary signed integer in twos-complement form.

Syntax ODBC BIGINT

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Display The default print picture of ODBC BIGINT fields is:

 PIC "-(19)9"

Family Numeric, binary integer

Technical The byte layout of the ODBC INTEGER data type is
as follows:

Byte 1 b55 b56 b57 b58 b59 b60 b61 b62
Byte 2 b47 b48 b49 b50 b51 b52 b53 b54
Byte 3 b39 b40 b41 b42 b43 b44 b45 b46
Byte 4 b31 b32 b33 b34 b35 b36 b37 b38
Byte 5 b23 b24 b25 b26 b27 b28 b29 b30
Byte 6 b15 b16 b17 b18 b19 b20 b21 b22
Byte 7 b7 b8 b9 b10 b11 b12 b13 b14
Byte 8 s b0 b1 b2 b3 b4 b5 b6

 Size: 4 bytes
 s = sign bit, 1 = negative

bn = b0 is the most significant bit and b62 is the
least significant bit

Range The range of INTEGER items is:

Maximum: +9223372036854775807
Minimum: -9223372036854775808

Examples DEFINE INT : ODBC BIGINT

 Defines INT as an 8 byte binary integer.

ODBC BINARY The ODBC BINARY data type represents fixed
length binary data.

ODBC Data Types Data Types

306 Chapter Six

Syntax ODBC BINARY(n)

n specifies the length in bytes of the field. n must
be from 1 to 8000.

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Display ODBC BINARY fields are printed in hexadecimal
using a default print width of 2 * (n + 1).

Family Binary, fixed length

Technical The byte layout of ODBC BINARY items is as
follows:

Byte 1 Data byte 1

Byte 2 Data byte 2

Byte n Data byte n

 Size: n bytes

Examples DEFINE BIN : ODBC BINARY(20)
DEFINE BIGBIN : ODBC BINARY(2000)

 Defines BIN as a 20 byte binary field. Defines
BIGBIN as a 2000 byte binary field.

ODBC BIT The ODBC BIT data type represents Boolean, or
true false data.

Syntax ODBC BIT

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Display The default print width of BIT fields is 6.

Family Logical

Data Types ODBC Data Types

 Chapter Six 307

Technical The byte layout of ODBC BINARY items is as
follows:

Byte 1 Data byte 1
 0 0 0 0 0 0 0 v

 Size: 1 byte

Range An ODBC BINARY item may only represent $TRUE
or $FALSE.

Example DEFINE MYFLAG : ODBC BINARY
SETVAR MYFLAG = $TRUE

 Defines MYFLAG as an ODBC bit field, then sets the
value of MYFLAG to $TRUE.

ODBC CHAR The ODBC CHAR data type represents fixed length
character data.

Syntax ODBC CHAR(n)

n specifies the length in bytes of the field. n must
be from 1 to 8000.

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Display The default print width of ODBC CHAR fields is the
width of the field, or n.

Family Character string, fixed length

Technical The byte layout of ODBC CHAR items is as follows:

Byte 1 Character 1

Byte 2 Character 2

Byte n Character n

ODBC Data Types Data Types

308 Chapter Six

 Size: n bytes

Examples DEFINE CH : ODBC CHAR(20) ALLOW NULLS
DEFINE BIGCH : ODBC CHAR(200)

 Defines CH as a 20 byte fixed length character
string that allows null values. Defines BIGCH as a
200 byte fixed length character string.

ODBC DATE The ODBC DATE data type represents a date and/or
time.

Syntax ODBC DATE

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Display The default print width of ODBC DATE fields is 11
in the following format:
 dd-mmm-yyyy

Family Date/time

Technical The byte layout of ODBC DATE items is as follows:

Byte 1 Year low bits

Byte 2 Year high bits

Byte 3 Month

Byte 4 Month filler (zero)

Byte 5 Day

Byte 6 Day filler (zero)

.

 Size: 6 bytes

Range The range of ODBC DATE items is:

Maximum: December 31, 9999 AD

Data Types ODBC Data Types

 Chapter Six 309

Minimum: January 1, 6000 BC

Examples DEFINE ORD_DATE : ODBC DATE

 Defines ORD_DATE as a 6 byte date in ODBC
format.

ODBC DECIMAL The ODBC DECIMAL data type represents fixed
point numeric data.

Syntax DECIMAL or NUMERIC
DECIMAL(n) or NUMERIC(n)
DECIMAL(n,m) or NUMERIC(n,m)

The keywords DECIMAL, DEC, and NUMERIC have
identical meanings and may be used
interchangeably.

n specifies the maximum number of digits the field
may hold, including digits to the right of the
decimal point. n must be from 1 to 38. If n is
omitted, n is assumed to be 15.

If m is specified, m indicates the number of digits to
the right of the decimal point the field may hold. If
m is not specified, m is assumed to be 0. m must be
from 0 to n.

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Display The default print picture of ODBC DECIMAL fields
is:

 PIC "-(n-m)9.9(m)" for m > 0
 PIC "-(n)9" for n > 0
 PIC "-(9)9.9(6)" for n = 0

Family Numeric

Technical The byte layout of ODBC DECIMAL type items is as
follows:

ODBC Data Types Data Types

310 Chapter Six

Byte 1 Sign “+” or “-”

Byte 2 Digit 1

Byte n-m+1 Decimal Point “.”
 0 0 1 0 1 1 1 0

Byte n+2 Digit n

Byte n+3 Zero terminator
 0 0 0 0 0 0 0 0

ODBC DECIMAL type items require one byte per
digit stored (n), plus one byte for the sign, plus one
byte for the decimal point, plus one byte for a zero
terminator.

 Size: n + 3 bytes

Range The range of ODBC DECIMAL items is:

Maximum: +99..99 with n - m digits
Minimum: -99..99 with n - m digits

Examples DEFINE DEC : ODBC DECIMAL(6)
DEFINE AMT : ODBC NUMERIC(10,2)

 Defines DEC as a 9 byte fixed decimal integer that
can hold up to 6 digits. The default print picture
for DEC is "-(6)9". Defines AMT as a 13 byte fixed
decimal integer that can hold up to 10 digits: 8
digits to the left of the decimal point, and 2 digits
to the right of the decimal point. The default print
picture for AMT is "-(8)9.9(2)"

ODBC DOUBLE
PRECISION

The ODBC DOUBLE PRECISION data type
represents an 8 byte IEEE floating point number.

Syntax ODBC DOUBLE PRECISION

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Data Types ODBC Data Types

 Chapter Six 311

Display The default print picture of ODBC DOUBLE
PRECISION fields is:

 PIC "-(9)9.9(6)"

Family Numeric, floating point

Technical The byte layout of the ODBC DOUBLE PRECISION
data type is as follows:

Byte 1 f44 f45 f46 f47 f48 f49 f50 f51
Byte 2 f36 f37 f38 f39 f40 f41 f42 f43
Byte 3 f28 f29 f30 f31 f32 f33 f34 f35
Byte 4 f20 f21 f22 f23 f24 f25 f26 f27
Byte 5 f12 f13 f14 f15 f16 f17 f18 f19
Byte 6 f4 f5 f6 f7 f8 f9 f10 f11
Byte 7 e7 e8 e9 e10 f0 f1 f2 f3
Byte 8 s e0 e1 e2 e3 e4 e5 e6

 Size: 8 bytes
 s = sign bit, 1 = negative

e = exponent, 11 bits, biased by 1023
f = fraction, 52 bits, implicit leading 1

 Value: (-1)s * 2(e - 1023) * (1.f)

 Notes: Exponents of all 0's and all 1's are reserved.
An exponent with all 0's and a fraction of all 0's
represents the number 0. An exponent of all 0's
and a non-zero fraction represents a
denormalized number. An exponent of all 1's
and a fraction of all 0's represents infinity. An
exponent of all 1's and a non-zero fraction
represents a NaN (not a number).

Range The range of ODBC DOUBLE PRECISION items is:

Maximum: +1.797693134862318 • 10308
Minimum: -1.797693134862318 • 10308
Minimum > 0: 4.940656458412465 • 10-324

Examples DEFINE FLT : ODBC DOUBLE PRECISION

ODBC Data Types Data Types

312 Chapter Six

 Defines FLT as an IEEE 8 byte floating point
number.

ODBC INTEGER The ODBC INTEGER data type represents a 4 byte
binary signed integer in twos-complement form.

Syntax ODBC INTEGER or ODBC INT

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Display The default print picture of ODBC INTEGER fields
is:

 PIC "-(10)9"

Family Numeric, binary integer

Technical The byte layout of the ODBC INTEGER data type is
as follows:

Byte 1 b23 b24 b25 b26 b27 b28 b29 b30
Byte 2 b15 b16 b17 b18 b19 b20 b21 b22
Byte 3 b7 b8 b9 b10 b11 b12 b13 b14
Byte 4 s b0 b1 b2 b3 b4 b5 b6

 Size: 4 bytes
 s = sign bit, 1 = negative

bn = b0 is the most significant bit and b30 is the
least significant bit

Range The range of INTEGER items is:

Maximum: +2147483647
Minimum: -2147483648

Examples DEFINE INT : ODBC INTEGER

 Defines INT as a 4 byte binary integer.

ODBC LONG
VARBINARY

The ODBC LONG VARBINARY data type represents
variable length binary data.

Data Types ODBC Data Types

 Chapter Six 313

Syntax ODBC LONG VARBINARY

The absolute maximum number of bytes that can
be represented with the ODBC LONG VARBINARY
data type is 2,147,483,643. In practice, this limit
can probably never be reached due to practical
considerations.

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Display ODBC LONG VARBINARY fields are printed in
hexadecimal using a default print width of
2 * (length + 1).

Family Binary, variable length

Technical The byte layout of ODBC LONG VARBINARY items
is as follows:

Byte 1 Character 1

Byte 2 Character 2

Byte n - 1 Character n - 1

Byte n Character n

 Size: n bytes, where n is the number of bytes
required to store a particular item.

Examples DEFINE BIN : ODBC LONG VARBINARY

 Defines BIN as a long variable length binary string.

ODBC LONG NVARCHAR The ODBC LONG NVARCHAR data type represents
variable length native (double byte) character data.

Syntax ODBC LONG NVARCHAR

ODBC Data Types Data Types

314 Chapter Six

The absolute maximum number of bytes that can
be represented with the ODBC LONG NVARCHAR
data type is 1,073,741,823. In practice however,
this limit can probably never be reached due to
practical considerations.

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Display There is no default print width for ODBC LONG
NVARCHAR fields. By default the entire field is
printed.

Family Character string, variable length, native

Technical The byte layout of ODBC LONG NVARCHAR items is
as follows:

Byte 1 Character 1 (L)

Byte 2 Character 1 (H)

Byte 3 Character 2 (L)

Byte 4 Character 2 (H)

Byte n*2-1 Character n (L)

Byte n*2 Character n (H)

 Size: n*2 bytes, where n is the number of
characters in the string.

Examples DEFINE CH : ODBC LONG NVARCHAR

 Defines CH as a long variable length native
character string.

ODBC LONG VARCHAR The ODBC LONG VARCHAR data type represents
variable length character data.

Data Types ODBC Data Types

 Chapter Six 315

Syntax ODBC LONG VARCHAR

The absolute maximum number of bytes that can
be represented with the ODBC LONG VARCHAR
data type is 2,147,483,643. In practice however,
this limit can probably never be reached due to
practical considerations.

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Display There is no default print width for ODBC LONG
VARCHAR fields. By default the entire field is
printed.

Family Character string, variable length

Technical The byte layout of ODBC LONG VARCHAR items is
as follows:

Byte 1 Character 1

Byte 2 Character 2

Byte n - 1 Character n - 1

Byte n Character n

 Size: n bytes, where n is the number of bytes
required to store a particular item.

Examples DEFINE CH : ODBC LONG VARCHAR

 Defines CH as a long variable length character
string.

ODBC NCHAR The ODBC NCHAR data type represents fixed length
native (double byte) character data.

Syntax ODBC NCHAR(n)

ODBC Data Types Data Types

316 Chapter Six

n specifies the length in bytes of the field. n must
be from 1 to 8000.

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Display The default print width of ODBC NCHAR fields is the
width of the field, or n.

Family Character string, fixed length, native

Technical The byte layout of ODBC NCHAR items is as follows:

Byte 1 Character 1 (L)

Byte 2 Character 1 (H)

Byte 3 Character 2 (L)

Byte 4 Character 2 (H)

Byte n*2-1 Character n (L)

Byte n*2 Character n (H)

 Size: n * 2 bytes

Examples DEFINE CH : ODBC NCHAR(20) ALLOW NULLS
DEFINE BIGCH : ODBC NCHAR(200)

 Defines CH as a 20 byte fixed length native
character string that allows null values. Defines
BIGCH as a 200 byte fixed length native character
string.

ODBC NVARCHAR The ODBC NVARCHAR data type represents variable
length native (double byte) character data.

Syntax ODBC NVARCHAR(n)

n specifies the maximum length in bytes of the

Data Types ODBC Data Types

 Chapter Six 317

field. n must be from 1 to 8000.

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Display The default print width of ODBC NVARCHAR fields is
the width of the field, or n.

Family Character string, variable length, native

Technical The byte layout of ODBC NVARCHAR items is as
follows:

Byte 1 Character 1 (L)

Byte 2 Character 1 (H)

Byte 3 Character 2 (L)

Byte 4 Character 2 (H)

Byte n*2-1 Character n (L)

Byte n*2 Character n (H)

Byte n*2+1 Length byte (H)

Byte n*2+2 Length byte (L)

 Size: (n * 2) + 2 bytes

Examples DEFINE CH : ODBC NVARCHAR(8) ALLOW NULLS
DEFINE BIGCH : ODBC NVARCHAR(2000)

 Defines CH as a variable length native character
string capable of holding up to 8 characters that
allows null values. Defines BIGCH as a variable
length native character string capable of holding
up to 2000 characters.

ODBC REAL The ODBC REAL data type represents a 4 byte
IEEE floating point number.

ODBC Data Types Data Types

318 Chapter Six

Syntax ODBC REAL

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Display The default print picture of ODBC REAL fields is:

 PIC "-(9)9.9(6)"

Family Numeric, floating point

Technical The byte layout of the ODBC REAL data type is as
follows:

Byte 1 f15 f16 f17 f18 f19 f20 f21 f22
Byte 2 f7 f8 f9 f10 f11 f12 f13 f14
Byte 3 e7 f0 f1 f2 f3 f4 f5 f6
Byte 4 s e0 e1 e2 e3 e4 e5 e6

 Size: 4 bytes
 s = sign bit, 1 = negative

e = exponent, 8 bits, biased by 127
f = fraction, 23 bits, implicit leading 1

 Value: (-1)s * 2(e - 127) * (1.f)

 Notes: Exponents of all 0's and all 1's are reserved.
An exponent with all 0's and a fraction of all 0's
represents the number 0. An exponent of all 0's
and a non-zero fraction represents a
denormalized number. An exponent of all 1's
and a fraction of all 0's represents infinity. An
exponent of all 1's and a non-zero fraction
represents a NaN (not a number).

Range The range of ODBC REAL items is:

Maximum: +3.402823 • 1038
Minimum: -3.402823 • 1038
Minimum > 0: +1.175495 • 10-38

Examples DEFINE FLT : ODBC REAL

Data Types ODBC Data Types

 Chapter Six 319

 Defines FLT as an IEEE 4 byte floating point
number.

ODBC SMALLINT The ODBC SMALLINT data type represents a 2 byte
binary signed integer in twos-complement form.

Syntax ODBC SMALLINT

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Display The default print picture of ODBC SMALLINT fields
is:

 PIC "-(5)9"

Family Numeric, binary integer

Technical The byte layout of the ODBC SMALLINT data type is
as follows:

Byte 1 b7 b8 b9 b10 b11 b12 b13 b14
Byte 2 s b0 b1 b2 b3 b4 b5 b6

 Size: 2 bytes
 s = sign bit, 1 = negative

bn = b0 is the most significant bit and b14 is the
least significant bit

Range The range of ODBC SMALLINT items is:

Maximum: +32767
Minimum: -32768

Examples DEFINE INT : ODBC SMALLINT

 Defines INT as a 2 byte binary integer.

ODBC TIME The ODBC TIME data type represents a date and/or
time.

Syntax ODBC TIME

ODBC Data Types Data Types

320 Chapter Six

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Display The default print width of ODBC TIME fields is 8 in
the following format:
 hh:mm:ss

Family Date/time

Technical The byte layout of ODBC TIME items is as follows:

Byte 1 Hour

Byte 2 Hour filler (zero)

Byte 3 Minute

Byte 4 Minute filler (zero)

Byte 5 Second

Byte 6 Second filler (zero)

 Size: 6 bytes

Range The range of ODBC TIME items is:

Maximum: 23:59:59
Minimum: 00:00:00

Examples DEFINE START_TIME : ODBC TIME

 Defines START_TIME as a 16 byte time in ODBC
format.

ODBC TIMESTAMP The ODBC TIMESTAMP data type represents a date
and/or time.

Syntax ODBC TIMESTAMP

ALLOW NULLS may be appended to the data type

Data Types ODBC Data Types

 Chapter Six 321

specification to allow storage of a null value.

Display The default print width of ODBC TIMESTAMP fields
is 20 in the following format:
 dd-mmm-yyyy hh:mm:ss

Family Date/time

Technical The byte layout of ODBC TIMESTAMP items is as
follows:

Byte 1 Year low bits

Byte 2 Year high bits

Byte 3 Month

Byte 4 Month filler (zero)

Byte 5 Day

Byte 6 Day filler (zero)

Byte 7 Hour

Byte 8 Hour filler (zero)

Byte 9 Minute

Byte 10 Minute filler (zero)

Byte 11 Second

Byte 12 Second filler (zero)

Byte 13 Nanosecond 4 (Low)

Byte 14 Nanosecond 3

Byte 15 Nanosecond 2

Byte 16 Nanosecond 1 (High)

ODBC Data Types Data Types

322 Chapter Six

 Size: 16 bytes

Range The range of ODBC TIMESTAMP items is:

Maximum: December 31, 9999 AD 23:59
Minimum: January 1, 6000 BC 00:00

Examples DEFINE ORD_DATE : ODBC TIMESTAMP

 Defines ORD_DATE as a 16 byte date in ODBC
format.

ODBC TINYINT The ODBC TINYINT data type represents a 1 byte
binary signed integer in twos-complement form.

Syntax ODBC TINYINT

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Display The default print picture of ODBC SMALLINT fields
is:

 PIC "-(3)9"

Family Numeric, binary integer

Technical The byte layout of the ODBC TINYINT data type is
as follows:

Byte 1 s b0 b1 b2 b3 b4 b5 b6

 Size: 1 byte
 s = sign bit, 1 = negative

bn = b0 is the most significant bit and b6 is the
least significant bit

Range The range of ODBC TINYINT items is:

Maximum: +127
Minimum: -128

Examples DEFINE INT : ODBC TINYINT

Data Types ODBC Data Types

 Chapter Six 323

 Defines INT as a 1 byte binary integer.

ODBC
UNIQUEIDENTIFIER

The ODBC UNIQUEIDENTIFIER data type
represents 16 bytes of binary data. Its purpose is
to provide support for the SQL Server
uniqueidentifier data type which is used to
contain a globally unique value.

Syntax ODBC UNIQUEIDENTIFIER

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Display ODBC UNIQUEIDENTIFIER fields are printed in
hexadecimal using a default print width of 34.

Family Binary, fixed length

Technical The byte layout of ODBC BINARY items is as
follows:

Byte 1 Data byte 1

Byte 2 Data byte 2

Byte 16 Data byte 16

 Size: 16 bytes

Example DEFINE UNQID : ODBC UNIQUEIDENTIFIER

 Defines UNQID as a 16 byte binary field.

ODBC VARBINARY The ODBC VARBINARY data type represents
variable length binary data.

Syntax ODBC VARBINARY(n)

n specifies the maximum length in bytes of the
field. n must be from 1 to 8000.

ODBC Data Types Data Types

324 Chapter Six

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Display ODBC VARBINARY printed in hexadecimal using a
default print width of 2 * (n + 1).

Family Binary, variable length

Technical The byte layout of ODBC VARBINARY items is as
follows:

Byte 1 Data byte 1

Byte 2 Data byte 2

Byte 3 Data byte 3

Byte n Data byte n

Byte n + 1 Length byte

 Size: n + 1 bytes

Examples DEFINE BIN : ODBC VARBINARY(20)
DEFINE BIGBIN : ODBC VARBINARY(200)

 Defines BIN as a variable length binary string
capable of holding up to 20 bytes. Defines BIGBIN
as a variable length binary string capable of
holding up to 200 bytes.

ODBC VARCHAR The ODBC VARCHAR data type represents variable
length character data.

Syntax ODBC VARCHAR(n)

n specifies the maximum length in bytes of the
field. n must be from 1 to 8000.

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Data Types ODBC Data Types

 Chapter Six 325

Display The default print width of ODBC VARCHAR fields is

the width of the field, or n.

Family Character string, variable length

Technical The byte layout of ODBC VARCHAR items is as
follows:

Byte 1 Data byte 1

Byte 2 Data byte 2

Byte 3 Data byte 3

Byte n Data byte n

Byte n + 1 Length byte

 Size: n + 1 bytes

Examples DEFINE CH : ODBC VARCHAR(20) ALLOW NULLS
DEFINE BIGCH : ODBC VARCHAR(2000)

 Defines CH as a variable length character string
capable of holding up to 20 characters that allows
null values. Defines BIGCH as a variable length
character string capable of holding up to 2000
characters.

Oracle Data Types Data Types

326 Chapter Six

Oracle Data Types The following data types originated on the
database management system Oracle. The Oracle
data types are all based on the internal Oracle
representation.

 Supported Oracle data types are as follows:

 CHAR Fixed length character data
DATE Dates and time data
FLOAT Interprets data as a ORACLE

NUMBER(126,-127)
INTERVAL Difference between two dates
LONG Long variable length character

data
LONG RAW Long variable length binary

data
NUMBER Fixed point numeric data
RAW Fixed length binary data
VARCHAR2 Variable length character data

Null Values Oracle data types support null values. To indicate

a data type that allows null values, ALLOW NULLS
is appended to the data type specification.
Example:

DEFINE CV : ORACLE CHAR(20) ALLOW NULLS

 The following is a detailed description of each of
the Oracle data types supported by Warehouse.

ORACLE CHAR The ORACLE CHAR data type represents fixed
length character data.

Syntax ORACLE CHAR(n)

n specifies the length in bytes of the field. n must
be from 1 to 2000.

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Display The default print width of ORACLE CHAR fields is
the width of the field, or n.

Data Types Oracle Data Types

 Chapter Six 327

Family Character string, fixed length

Technical The byte layout of ORACLE CHAR items is as
follows:

Byte 1 Character 1

Byte 2 Character 2

Byte n Character n

 Size: n bytes

Examples DEFINE CH : ORACLE CHAR(20) ALLOW NULLS
DEFINE BIGCH : ORACLE CHAR(200)

 Defines CH as a 20 byte fixed length character
string that allows null values. Defines BIGCH as a
200 byte fixed length character string.

ORACLE DATE The ORACLE DATE data type represents a date
and/or time.

Syntax ORACLE DATE

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Display The default print width of ORACLE DATE fields is
20 in the following format:

 dd-mmm-yyyy hh:mm:ss

Family Date/time

Technical The byte layout of ORACLE DATE items is as
follows:

Byte 1 Century

Byte 2 Year

Oracle Data Types Data Types

328 Chapter Six

Byte 3 Month

Byte 4 Day

Byte 5 Hour

Byte 6 Minute

Byte 7 Second

The century byte and the year byte are biased by
100. All other bytes are biased by 1. The default
time is midnight (0:00:00). For example, the date
and time of May 8, 1995, 2:56:08 PM is stored as
follows:

 Byte 1: 119 19 + 100
Byte 2: 195 95 + 100
Byte 3: 6 5 + 1
Byte 4: 9 8 + 1
Byte 5: 15 14 + 1
Byte 6: 57 56 + 1
Byte 7: 9 8 + 1

 Size: 7 bytes

Range The range of ORACLE DATE items is:

Maximum: December 31, 9999 AD
Minimum: January 1, 6000 BC

Examples DEFINE ORD_DATE : ORACLE DATE

 Defines ORD_DATE as a 7 byte date in Oracle
format.

ORACLE FLOAT The ORACLE FLOAT data type represents floating
point decimal data.

Syntax ORACLE FLOAT

Data Types Oracle Data Types

 Chapter Six 329

Interpreted as ORACLE NUMBER(126,-127).

Display See ORACLE NUMBER.

Family Numeric

Technical See ORACLE NUMBER.

Examples DEFINE ORA_FLT : ORACLE FLOAT VALUE

3.1415926
PRINT ORA_FLT
GO

Displays the following results:

 3.141593

ORACLE INTERVAL The ORACLE INTERVAL data type represents a
numeric date interval.

Syntax ORACLE INTERVAL DAY TO SECOND

or

ORACLE INTERVAL YEAR TO MONTH

DAY TO SECOND is an interval containing days
down to nanoseconds. Date arithmetic operations
are available for this data type.

YEAR TO MONTH is an interval containing only the
year and month. No date arithmetic operations are
available for this data type.

Display The interval can be printed using PIC elements to
access just the numeric portion, just the time
portion, or both.

PIC "N*"
PIC "HH24:MI"
PIC "N* HH24:MI:SS"
PIC "N* HH24:MI:SS.T*"

N* - Interval is interpreted as a simple

number

Oracle Data Types Data Types

330 Chapter Six

The numeric portion must always be accessed
using the N*, otherwise an Invalid date
format specification error is thrown. The
time portion can have any valid time format
element.

Family Date/time

Technical The byte layout of ORACLE INTERVAL DAY TO
SECOND items are as follows:

Byte 1 Digit 1

Byte 2 Digit 2

Byte 3 Digit 3

Byte 4 Digit 4

Byte 5 Hour

Byte 6 Minute

Byte 7 Second

Byte 8 Nanosecond 1

Byte 9 Nanosecond 2

Byte 10 Nanosecond 3

Byte 11 Nanosecond 4

Size: 11 bytes

The byte layout of ORACLE INTERVAL YEAR TO
MONTH items are as follows:

Byte 1 Year 1

Byte 2 Year 2

Data Types Oracle Data Types

 Chapter Six 331

Byte 3 Year 3

Byte 4 Year 4

Byte 5 Month

Size: 5 bytes

Examples DEFINE ORD_A : ORACLE DATE
DEFINE ORD_B : ORACLE DATE
DEFINE ORD_INT : ORACLE INTERVAL DAY TO

SECOND

SETVAR ORD_A = 20080101
SETVAR ORD_B = 20081031
SETVAR ORD_INT = ORD_B – ORD_A

PRINT ORD_A, ORD_B, ORD_INT
PRINT ORD_INT PIC "HH:MM:SS"
PRINT ORD_INT PIC "N*"
GO

Displays the following results:

01-JAN-2008 31-OCT-2008 304 00:00:00
12:00:00
304

ORACLE LONG The ORACLE LONG data type represents variable
length character data.

Syntax ORACLE LONG

The absolute maximum number of bytes that can
be represented with the ORACLE LONG data type is
2,147,483,643. In practice however, this limit can
probably never be reached due to practical
considerations. On some machines Warehouse
uses the type ORACLE LONG_ instead of ORACLE
LONG. The difference between the two is the byte
ordering of the length bytes. With ORACLE LONG,
the high order byte is first. With ORACLE LONG_,
the high order byte is last.

Oracle Data Types Data Types

332 Chapter Six

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Display There is no default print width for ORACLE LONG
fields. By default the entire field is printed.

Family Character string, variable length

Technical The byte layout of ORACLE LONG items is as
follows:

Byte 1 Length byte 1
 H
Byte 2 Length byte 2

Byte 3 Length byte 3

Byte 4 Length byte 4
 L
Byte 5 Character 1

Byte 6 Character 2

Byte n + 3 Character n - 1

Byte n + 4 Character n

 Size: n + 4 bytes, where n is the number of bytes
required to store a particular item.

 H= High order bit
L= Low order bit

 The byte layout of ORACLE LONG_ items is as
follows:

Byte 1 Length byte 1
 L
Byte 2 Length byte 2

Byte 3 Length byte 3

Data Types Oracle Data Types

 Chapter Six 333

Byte 4 Length byte 4
 H
Byte 5 Character 1

Byte 6 Character 2

Byte n + 3 Character n - 1

Byte n + 4 Character n

 Size: n + 4 bytes, where n is the number of bytes
required to store a particular item.

 H= High order bit
L= Low order bit

Examples DEFINE CH : ORACLE LONG ALLOW NULLS

 Defines CH as a long variable length character

string that allows null values.

ORACLE LONG RAW The ORACLE LONG RAW data type represents
variable length binary data.

Syntax ORACLE LONG RAW

The absolute maximum number of bytes that can
be represented with the ORACLE LONG RAW data
type is 2,147,483,643. In practice, this limit can
probably never be reached due to practical
considerations. On some machines Warehouse
uses the type ORACLE LONG RAW_ instead of
ORACLE LONG RAW. The difference between the
two is the byte ordering of the length bytes. With
ORACLE LONG RAW, the high order byte is first.
With ORACLE LONG RAW_, the high order byte is
last.

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Oracle Data Types Data Types

334 Chapter Six

Display ORACLE LONG RAW fields are printed in
hexadecimal using a default print width of
2 * (length + 1).

Family Binary, variable length

Technical The byte layout of ORACLE LONG RAW items is as
follows:

Byte 1 Length byte 1
 H
Byte 2 Length byte 2

Byte 3 Length byte 3

Byte 4 Length byte 4
 L
Byte 5 Data byte 1

Byte 6 Data byte 2

Byte n + 3 Data byte n - 1

Byte n + 4 Data byte n

 Size: n + 4 bytes, where n is the number of bytes
required to store a particular item.

 H= High order bit
L= Low order bit

 The byte layout of ORACLE LONG RAW_ items is as

follows:

Data Types Oracle Data Types

 Chapter Six 335

Byte 1 Length byte 1
 L
Byte 2 Length byte 2

Byte 3 Length byte 3

Byte 4 Length byte 4
 H
Byte 5 Data byte 1

Byte 6 Data byte 2

Byte n + 3 Data byte n - 1

Byte n + 4 Data byte n

 Size: n + 4 bytes, where n is the number of bytes
required to store a particular item.

 H= High order bit
L= Low order bit

Examples DEFINE BIN : ORACLE LONG RAW

 Defines BIN as a long variable length binary string.

ORACLE NUMBER The ORACLE NUMBER data type represents floating
point decimal data.

Syntax ORACLE NUMBER
 or
ORACLE NUMBER(n)
 or
ORACLE NUMBER(n,m)

n specifies the maximum number of digits the field
may hold, including digits to the right of the
decimal point. n must be from 0 to 38. The default
is 0 and indicates the maximum number of digits
(38).

Oracle Data Types Data Types

336 Chapter Six

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

 If m is specified, m indicates the maximum exponent
of the number. m must be in the range of -84 to
127.

Display The default print picture of ORACLE NUMBER fields
is:

 PIC "-(n-m)9.9(m)" for m > 0
 PIC "-(n)9" for n > 0
 PIC "-(9)9.9(6)" for n = 0

Family Numeric

Technical ORACLE NUMBER fields require 22 bytes of storage.
The first byte contains a number that represents
the number of bytes required to store the number.
The length is from 1 to 21.

 The second byte contains the sign and exponent of
the number. The first bit contains the sign, 1 if
positive. The remaining 7 bits contain the
exponent. If the number is positive, 64 is added to
the exponent. If the number is negative, the
exponent is subtracted from 63.

 The remaining bytes contain the digits of the
number in base 100. For positive numbers, 1 is
added to each base 100 digit. For negative
numbers, the base 100 digit is subtracted from 101.
Negative numbers less than 22 bytes long are
terminated with 102. Each base 100 digit contains
2 base 10 digits.

 Byte layout for an ORACLE NUMBER:

Byte 1 Length of number

Byte 2 Sign and Exponent
 S
Byte 3 Base 100 digit 1

Data Types Oracle Data Types

 Chapter Six 337

Byte 4 Base 100 digit 2

Byte 5 Base 100 digit 3

Byte 22 Base 100 digit 20

Size: 22 bytes

Range The range of ORACLE NUMBERS items is:

Maximum: +9.999999 • 10125
Minimum: +9.999999 • 10125
Minimum > 0: +1.000000 • 10-129

Examples DEFINE DEC : ORACLE NUMBER(6)
DEFINE AMT : ORACLE NUMBER(10,2)

 Defines DEC as an integer that can hold up to 6
digits. Defines AMT as a number that can hold up
to 10 digits: 8 digits to the left of the decimal point,
and 2 digits to the right of the decimal point.

ORACLE RAW The ORACLE RAW data type represents fixed length
binary data.

Syntax ORACLE RAW(n)

n specifies the maximum length in bytes of the
field. n must be from 1 to 2000.

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Display ORACLE RAW fields are printed in hexadecimal
using a default print width of 2 * (n + 1).

Family Binary, fixed length

Technical The byte layout of ORACLE RAW items is as follows:

Byte 1 Data byte 1

Oracle Data Types Data Types

338 Chapter Six

Byte 2 Data byte 2

Byte n Data byte n

 Size: n bytes

Examples DEFINE BIN : ORACLE RAW(20)
DEFINE BIGBIN : ORACLE RAW(200)

 Defines BIN as a 20 byte binary field. Defines
BIGBIN as a 200 byte binary field.

ORACLE TIMESTAMP The ORACLE TIMESTAMP data type represents a
date and/or time with precision to the nanosecond.

Syntax ORACLE TIMESTAMP [ALLOW NULLS]

or

ORACLE TIMESTAMP WITH [LOCAL] TIME ZONE

[ALLOW NULLS]

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

WITH [LOCAL] TIME ZONE when specified will
store time zone information in addition to the date
and time. If local is specified, assumes the local
time zone.

Display The default print width of ORACLE TIMESTAMP
fields is 20 in the following format:

 dd-mmm-yyyy hh:mm:ss

Family Date/time

Technical The byte layout of ORACLE TIMESTAMP items is as
follows:

Byte 1 Century

Data Types Oracle Data Types

 Chapter Six 339

Byte 2 Year

Byte 3 Month

Byte 4 Day

Byte 5 Hour

Byte 6 Minute

Byte 7 Second

Byte 8 Nanosecond 1
 H
Byte 9 Nanosecond 2

Byte 10 Nanosecond 3

Byte 11 Nanosecond 4
 L

The century byte and the year byte are biased by
100. All other bytes are biased by 1. The
nanoseconds are stored in bytes 8-11 as a 32 bit
binary integer with byte eight being the high order
byte and byte 11 being the low order byte. The
default time is midnight (0:00:00). For example,
the date and time of May 8, 1995, 2:56:08.128 PM
is stored as follows:

 Byte 1: 119 19 + 100
Byte 2: 195 95 + 100
Byte 3: 6 5 + 1
Byte 4: 9 8 + 1
Byte 5: 15 14 + 1
Byte 6: 57 56 + 1
Byte 7: 9 8 + 1
Byte 8: 7 1st byte of 128,000,000
Byte 9: 161 2nd byte of 128,000,000
Byte 10: 32 3rd byte of 128,000,000
Byte 11: 0 4th byte of 128,000,000

Oracle Data Types Data Types

340 Chapter Six

 Size: 11 bytes

Range The range of ORACLE DATE items is:

Maximum: December 31, 9999 AD
Minimum: January 1, 6000 BC

Examples DEFINE ORD_TS : ORACLE TIMESTAMP

 Defines ORD_TS as an 11 byte timestamp in Oracle
format.

ORACLE VARCHAR2 The ORACLE VARCHAR2 data type represents
variable length character data.

Syntax ORACLE VARCHAR2(n)

n specifies the maximum length in bytes of the
field. n must be from 1 to 4000. On some machines
Warehouse uses the type ORACLE VARCHAR2_
instead of ORACLE VARCHAR2. The difference
between the two is the byte ordering of the length
bytes. With ORACLE VARCHAR2, the high order
byte is first. With ORACLE VARCHAR2_, the high
order byte is last.

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Display The default print width of ORACLE VARCHAR2
fields is the width of the field, or n.

Family Character string, variable length

Technical The byte layout of ORACLE VARCHAR2 items is as
follows:

Byte 1 Length byte 1
 H
Byte 2 Length byte 2
 L
Byte 3 Character 1

Data Types Oracle Data Types

 Chapter Six 341

Byte 4 Character 2

Byte n + 1 Character n - 1

Byte n + 2 Character n

 Size: n + 2 bytes
 H= High order bit

L= Low order bit

The byte layout of ORACLE VARCHAR2_ items is as
follows:

Byte 1 Length byte 1
 L
Byte 2 Length byte 2
 H
Byte 3 Character 1

Byte 4 Character 2

Byte n + 1 Character n - 1

Byte n + 2 Character n

 Size: n + 2 bytes
 H= High order bit

L= Low order bit

Examples DEFINE CH : ORACLE VARCHAR2(20)

DEFINE BIGCH : ORACLE VARCHAR2(1000)

 Defines CH as a variable length character string
capable of holding up to 20 characters. Defines
BIGCH as a variable length character string capable
of holding up to 1000 characters.

SQL Data Types Data Types

342 Chapter Six

SQL Data Types The following data types originated from the DB2
database management system from IBM.

 Supported SQL data types are as follows:

 BINARY Fixed length binary data
CHAR Fixed length character

data
DATE Calendar date
DECIMAL Fixed point numeric data
DOUBLE PRECISION 64 bit IEEE floating

point data
INTEGER 32 bit integer data
LONG VARBINARY Long variable length

binary data
LONG VARCHAR Long variable length

character data
NUMERIC Alias for DECIMAL
REAL 32 bit IEEE floating

point data
SMALLINT 16 bit integer data
TIME Time of day
TIMESTAMP Calendar date and time
VARBINARY Variable length binary

data
VARCHAR Variable length character

data

Null Values SQL data types support null values. To indicate a
data type that allows null values, ALLOW NULLS is
appended to the data type specification. Example:

DEFINE CV : SQL CHAR(20) ALLOW NULLS

 The following is a detailed description of each of
the SQL data types supported by Warehouse.

SQL BINARY The SQL BINARY data type represents fixed length
binary data.

Syntax SQL BINARY(n)

n specifies the length in bytes of the field. n must

Data Types SQL Data Types

 Chapter Six 343

be from 1 to 254.

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Display SQL BINARY fields are printed in hexadecimal
using a default print width of 2 * (n + 1).

Family Binary, fixed length

Technical The byte layout of SQL BINARY items is as follows:

Byte 1 Data byte 1

Byte 2 Data byte 2

Byte n Data byte n

 Size: n bytes

Examples DEFINE BIN : SQL BINARY(20)
DEFINE BIGBIN : SQL BINARY(2000)

 Defines BIN as a 20 byte binary field. Defines
BIGBIN as a 2000 byte binary field.

SQL CHAR The SQL CHAR data type represents fixed length
character data.

Syntax SQL CHAR(n)

n specifies the length in bytes of the field. n must
be from 1 to 254.

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Display The default print width of SQL CHAR fields is the
width of the field, or n.

Family Character string, fixed length

SQL Data Types Data Types

344 Chapter Six

Technical The byte layout of SQL CHAR items is as follows:

Byte 1 Character 1

Byte 2 Character 2

Byte n Character n

 Size: n bytes

Examples DEFINE CH : SQL CHAR(20)
DEFINE BIGCH : SQL CHAR(200)

 Defines CH as a 20 byte fixed length character
string. Defines BIGCH as a 200 byte fixed length
character string.

SQL DATE The SQL DATE data type represents a date and/or
time.

Syntax SQL DATE

On some machines Warehouse uses the type SQL
DATE_ instead of SQL DATE. The difference
between the two is the data alignment. SQL DATE
fields may be 1 byte aligned. SQL DATE_ fields are
2 byte aligned.

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Display The default print width of SQL DATE fields is 11 in
the following format:
 dd-mmm-yyyy

Family Date/time

Technical The byte layout of SQL DATE items is as follows:

Byte 1 Year high bits

Data Types SQL Data Types

 Chapter Six 345

Byte 2 Year low bits

Byte 3 Month filler (zero)

Byte 4 Month

Byte 5 Day filler (zero)

Byte 6 Day

.

 Size: 6 bytes

Range The range of SQL DATE items is:

Maximum: December 31, 9999 AD
Minimum: January 1, 6000 BC

Examples DEFINE ORD_DATE : SQL DATE ALLOW NULLS

 Defines ORD_DATE as a 6 byte date in SQL format
that allows null values.

SQL DECIMAL The SQL DECIMAL data type represents fixed point
numeric data.

Syntax DECIMAL or NUMERIC
DECIMAL(n) or NUMERIC(n)
DECIMAL(n,m) or NUMERIC(n,m)

The keywords DECIMAL, DEC, and NUMERIC have
identical meanings and may be used
interchangeably.

n specifies the maximum number of digits the field
may hold, including digits to the right of the
decimal point. n must be from 1 to 28. If n is
omitted, n is assumed to be 15.

If m is specified, m indicates the number of digits to
the right of the decimal point the field may hold. If
m is not specified, m is assumed to be 0. m must be
from 0 to n.

SQL Data Types Data Types

346 Chapter Six

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Display The default print picture of SQL DECIMAL fields is:

 PIC "-(n-m)9.9(m)" for m > 0
 PIC "-(n)9" for n > 0
 PIC "-(9)9.9(6)" for n = 0

Family Numeric

Technical The byte layout of SQL DECIMAL type items is as
follows:

Byte 1 Sign “+” or “-”

Byte 2 Digit 1

Byte n-m+1 Decimal Point “.”
 0 0 1 0 1 1 1 0

Byte n+2 Digit n

Byte n+3 Zero terminator
 0 0 0 0 0 0 0 0

SQL DECIMAL type items require one byte per digit
stored (n), plus one byte for the sign, plus one byte
for the decimal point, plus one byte for a zero
terminator.

 Size: n + 3 bytes

Range The range of SQL DECIMAL items is:

Maximum: +99..99 with n - m digits
Minimum: -99..99 with n - m digits

Examples DEFINE DEC : SQL DECIMAL(6)
DEFINE AMT : SQL NUMERIC(10,2)

 Defines DEC as a 9 byte fixed decimal integer that
can hold up to 6 digits. The default print picture

Data Types SQL Data Types

 Chapter Six 347

for DEC is "-(6)9". Defines AMT as a 13 byte fixed
decimal integer that can hold up to 10 digits: 8
digits to the left of the decimal point, and 2 digits
to the right of the decimal point. The default print
picture for AMT is "-(8)9.9(2)"

SQL DOUBLE
PRECISION

The SQL DOUBLE PRECISION data type represents
an 8 byte IEEE floating point number.

Syntax SQL DOUBLE PRECISION

On some machines Warehouse uses the type SQL
DOUBLE PRECISION_ instead of SQL DOUBLE
PRECISION. The difference between the two is the
data alignment. SQL DOUBLE PRECISION fields
may be 1 byte aligned. SQL DOUBLE PRECISION_
fields are 8 byte aligned.

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Display The default print picture of SQL DOUBLE
PRECISION fields is:

 PIC "-(9)9.9(6)"

Family Numeric, floating point

Technical The byte layout of the SQL DOUBLE PRECISION
data type is as follows:

Byte 1 s e0 e1 e2 e3 e4 e5 e6
Byte 2 e7 e8 e9 e10 f0 f1 f2 f3
Byte 3 f4 f5 f6 f7 f8 f9 f10 f11
Byte 4 f12 f13 f14 f15 f16 f17 f18 f19
Byte 5 f20 f21 f22 f23 f24 f25 f26 f27
Byte 6 f28 f29 f30 f31 f32 f33 f34 f35
Byte 7 f36 f37 f38 f39 f40 f41 f42 f43
Byte 8 f44 f45 f46 f47 f48 f49 f50 f51

 Size: 8 bytes
 s = sign bit, 1 = negative

SQL Data Types Data Types

348 Chapter Six

e = exponent, 11 bits, biased by 1023
f = fraction, 52 bits, implicit leading 1

 Value: (-1)s * 2(e - 1023) * (1.f)

 Notes: Exponents of all 0's and all 1's are reserved.
An exponent with all 0's and a fraction of all 0's
represents the number 0. An exponent of all 0's
and a non-zero fraction represents a
denormalized number. An exponent of all 1's
and a fraction of all 0's represents infinity. An
exponent of all 1's and a non-zero fraction
represents a NaN (not a number).

Range The range of SQL DOUBLE PRECISION items is:

Maximum: +1.797693134862318 • 10308
Minimum: -1.797693134862318 • 10308
Minimum > 0: 4.940656458412465 • 10-324

Examples DEFINE FLT : SQL DOUBLE PRECISION

 Defines FLT as an IEEE 8 byte floating point
number.

SQL INTEGER The SQL INTEGER data type represents a 4 byte
binary signed integer in twos-complement form.

Syntax SQL INTEGER or SQL INT

On some machines Warehouse uses the type SQL
INTEGER_ instead of SQL INTEGER. The difference
between the two is the data alignment. SQL
INTEGER fields may be 1 byte aligned. SQL
INTEGER_ fields are 4 byte aligned.

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Display The default print picture of SQL INTEGER fields is:

 PIC "-(10)9"

Data Types SQL Data Types

 Chapter Six 349

Family Numeric, binary integer

Technical The byte layout of the SQL INTEGER data type is
as follows:

Byte 1 s b0 b1 b2 b3 b4 b5 b6
Byte 2 b7 b8 b9 b10 b11 b12 b13 b14
Byte 3 b15 b16 b17 b18 b19 b20 b21 b22
Byte 4 b23 b24 b25 b26 b27 b28 b29 b30

 Size: 4 bytes
 s = sign bit, 1 = negative

bn = b0 is the most significant bit and b30 is the
least significant bit

Range The range of INTEGER items is:

Maximum: +2147483647
Minimum: -2147483648

Examples DEFINE INT : SQL INTEGER

 Defines INT as a 4 byte binary integer.

SQL LONG VARBINARY The SQL LONG VARBINARY data type represents
variable length binary data.

Syntax SQL LONG VARBINARY

The absolute maximum number of bytes that can
be represented with the SQL LONG VARBINARY
data type is 2,147,483,643. In practice, this limit
can probably never be reached due to practical
considerations.

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Display SQL LONG VARBINARY fields are printed in
hexadecimal using a default print width of
2 * (length + 1).

Family Binary, variable length

SQL Data Types Data Types

350 Chapter Six

Technical The byte layout of SQL LONG VARBINARY items is

as follows:

Byte 1 Character 1

Byte 2 Character 2

Byte n - 1 Character n - 1

Byte n Character n

 Size: n bytes, where n is the number of bytes
required to store a particular item.

Examples DEFINE BIN : SQL LONG VARBINARY

 Defines BIN as a long variable length binary string.

SQL LONG VARCHAR The SQL LONG VARCHAR data type represents
variable length character data.

Syntax SQL LONG VARCHAR

The absolute maximum number of bytes that can
be represented with the SQL LONG VARCHAR data
type is 2,147,483,643. In practice however, this
limit can probably never be reached due to
practical considerations.

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Display There is no default print width for SQL LONG
VARCHAR fields. By default the entire field is
printed.

Family Character string, variable length

Technical The byte layout of SQL LONG VARCHAR items is as
follows:

Data Types SQL Data Types

 Chapter Six 351

Byte 1 Character 1

Byte 2 Character 2

Byte n - 1 Character n - 1

Byte n Character n

 Size: n bytes, where n is the number of bytes
required to store a particular item.

Examples DEFINE CH : SQL LONG VARCHAR

 Defines CH as a long variable length character
string.

SQL REAL The SQL REAL data type represents a 4 byte IEEE
floating point number.

Syntax SQL REAL

On some machines Warehouse uses the type SQL
REAL_ instead of SQL REAL. The difference
between the two is the data alignment. SQL REAL
fields may be 1 byte aligned. SQL REAL_ fields are
4 byte aligned.

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Display The default print picture of SQL REAL fields is:

 PIC "-(9)9.9(6)"

Family Numeric, floating point

Technical The byte layout of the SQL REAL data type is as
follows:

Byte 1 s e0 e1 e2 e3 e4 e5 e6

SQL Data Types Data Types

352 Chapter Six

Byte 2 e7 f0 f1 f2 f3 f4 f5 f6
Byte 3 f7 f8 f9 f10 f11 f12 f13 f14
Byte 4 f15 f16 f17 f18 f19 f20 f21 f22

 Size: 4 bytes
 s = sign bit, 1 = negative

e = exponent, 8 bits, biased by 127
f = fraction, 23 bits, implicit leading 1

 Value: (-1)s * 2(e - 127) * (1.f)

 Notes: Exponents of all 0's and all 1's are reserved.
An exponent with all 0's and a fraction of all 0's
represents the number 0. An exponent of all 0's
and a non-zero fraction represents a
denormalized number. An exponent of all 1's
and a fraction of all 0's represents infinity. An
exponent of all 1's and a non-zero fraction
represents a NaN (not a number).

Range The range of SQL REAL items is:

Maximum: +3.402823 • 1038
Minimum: -3.402823 • 1038
Minimum > 0: +1.175495 • 10-38

Examples DEFINE FLT : SQL REAL

 Defines FLT as an IEEE 4 byte floating point
number.

SQL SMALLINT The SQL SMALLINT data type represents a 2 byte
binary signed integer in twos-complement form.

Syntax SQL SMALLINT

On some machines Warehouse uses the type SQL
SMALLINT_ instead of SQL SMALLINT. The
difference between the two is the data alignment.
SQL SMALLINT fields may be 1 byte aligned. SQL
SMALLINT_ fields are 2 byte aligned.

ALLOW NULLS may be appended to the data type

Data Types SQL Data Types

 Chapter Six 353

specification to allow storage of a null value.

Display The default print picture of SQL SMALLINT fields
is:

 PIC "-(5)9"

Family Numeric, binary integer

Technical The byte layout of the SQL SMALLINT data type is
as follows:

Byte 1 s b0 b1 b2 b3 b4 b5 b6
Byte 2 b7 b8 b9 b10 b11 b12 b13 b14

 Size: 2 bytes
 s = sign bit, 1 = negative

bn = b0 is the most significant bit and b14 is the
least significant bit.

Range The range of SQL SMALLINT items is:

Maximum: +32767
Minimum: -32768

Examples DEFINE INT : SQL SMALLINT

 Defines INT as a 2 byte binary integer.

SQL TIME The SQL TIME data type represents a date and/or
time.

Syntax SQL TIME

On some machines Warehouse uses the type SQL
TIME_ instead of SQL TIME. The difference
between the two is the data alignment. SQL TIME
fields may be 1 byte aligned. SQL TIME_ fields are
2 byte aligned.

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

SQL Data Types Data Types

354 Chapter Six

Display The default print width of SQL TIME fields is 8 in
the following format:
 hh:mm:ss

Family Date/time

Technical The byte layout of SQL TIME items is as follows:

Byte 1 Hour filler (zero)

Byte 2 Hour

Byte 3 Minute filler (zero)

Byte 4 Minute

Byte 5 Second filler (zero)

Byte 6 Second

 Size: 6 bytes

Range The range of SQL TIME items is:

Maximum: 23:59:59
Minimum: 00:00:00

Examples DEFINE START_TIME : SQL TIME

 Defines START_TIME as a 16 byte time in SQL
format.

SQL TIMESTAMP The SQL TIMESTAMP data type represents a date
and/or time.

Syntax SQL TIMESTAMP

On some machines Warehouse uses the type SQL
TIMESTAMP_ instead of SQL TIMESTAMP. The
difference between the two is the data alignment.
SQL TIMESTAMP fields may be 1 byte aligned. SQL
TIMESTAMP_ fields are 4 byte aligned.

Data Types SQL Data Types

 Chapter Six 355

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Display The default print width of SQL TIMESTAMP fields is
20 in the following format:
 dd-mmm-yyyy hh:mm:ss

Family Date/time

Technical The byte layout of SQL TIMESTAMP items is as
follows:

Byte 1 Year high bits

Byte 2 Year low bits

Byte 3 Month filler (zero)

Byte 4 Month

Byte 5 Day filler (zero)

Byte 6 Day

Byte 7 Hour filler (zero)

Byte 8 Hour

Byte 9 Minute filler (zero)

Byte 10 Minute

Byte 11 Second filler (zero)

Byte 12 Second

Byte 13 Nanosecond 1 (High)

Byte 14 Nanosecond 2

Byte 15 Nanosecond 3

Byte 16 Nanosecond 4 (Low)

SQL Data Types Data Types

356 Chapter Six

 Size: 16 bytes

Range The range of SQL TIMESTAMP items is:

Maximum: December 31, 9999 AD 23:59
Minimum: January 1, 6000 BC 00:00

Examples DEFINE ORD_DATE : SQL TIMESTAMP

 Defines ORD_DATE as a 16 byte date in SQL format.

SQL VARBINARY The SQL VARBINARY data type represents variable
length binary data.

Syntax SQL VARBINARY(n)

n specifies the maximum length in bytes of the
field. n must be from 1 to 254.

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Display SQL VARBINARY printed in hexadecimal using a
default print width of 2 * (n + 1).

Family Binary, variable length

Technical The byte layout of SQL VARBINARY items is as
follows:

Byte 1 Data byte 1

Byte 2 Data byte 2

Byte 3 Data byte 3

Byte n Data byte n

Byte n + 1 Length byte

Data Types SQL Data Types

 Chapter Six 357

 Size: n + 1 bytes

Examples DEFINE BIN : SQL VARBINARY(20)
DEFINE BIGBIN : SQL VARBINARY(200)

 Defines BIN as a variable length binary string
capable of holding up to 20 bytes. Defines BIGBIN
as a variable length binary string capable of
holding up to 200 bytes.

SQL VARCHAR The SQL VARCHAR data type represents variable
length character data.

Syntax SQL VARCHAR(n)

n specifies the maximum length in bytes of the
field. n must be from 1 to 3996.

ALLOW NULLS may be appended to the data type
specification to allow storage of a null value.

Display The default print width of SQL VARCHAR fields is
the width of the field, or n.

Family Character string, variable length

Technical The byte layout of SQL VARCHAR items is as
follows:

Byte 1 Data byte 1

Byte 2 Data byte 2

Byte 3 Data byte 3

Byte n Data byte n

Byte n + 1 Length byte

SQL Data Types Data Types

358 Chapter Six

 Size: n + 1 bytes

Examples DEFINE CH : SQL VARCHAR(20)
DEFINE BIGCH : SQL VARCHAR(2000)

 Defines CH as a variable length character string
capable of holding up to 20 characters. Defines
BIGCH as a variable length character string capable
of holding up to 2000 characters.

Data Types Warehouse Data Types

 Chapter Six 359

Warehouse Data
Types

The following data types are Warehouse data
types. Warehouse data types are used internally
within Warehouse for many operations.

Supported Warehouse data types are as follows:

 ARRAY Array of items.
BINARY Variable length binary data
BOOLEAN Logical (true/false) data
[TEXT] CHAR Fixed length character data
CHRONOS Six byte date/time
DATE A calendar date
DATETIME A calendar date and time
FLOAT Floating point numeric
INTEGER Variable length integer
INTERVAL Difference between dates/times
NSTRING Variable length native (double-

byte) character data
NUMERIC Variable length numeric
RECORD Data records
[TEXT] SIGNED Fixed length signed numeric
STRING Variable length character data
TIME A time within day
[TEXT] UNSIGNED Fixed length unsigned

numeric

TEXT types are optional for CHAR, SIGNED, and
UNSIGNED. This has no effect on the data type
and is provided for readability.

Null Values Warehouse data types can be designated as

allowing nulls by specifying ALLOW NULLS after
the type name, e.g. INTEGER ALLOW NULLS.

 The following is a detailed description of each
Warehouse data type.

ARRAY The ARRAY data type represents an array of items.

Syntax ARRAY [lo-ix .. hi-ix] OF data-type

 lo-ix is the minimum index of the array and must

Warehouse Data Types Data Types

360 Chapter Six

be less than or equal to hi-ix.

 hi-ix is the maximum index of the array and
must be greater than or equal to lo-ix.

 data-type is any Warehouse type specification
including records and arrays.

Display Arrays are printed by field with each field
separated by one space.

Family Array

Technical The byte layout of arrays depends on the fields
within the record. The alignment of each field is
adjacent to the previous field with no filler. The
exception to this is Warehouse data types, which
may be 4 byte aligned.

Elements of an array are accessed using square
brackets around the array index as follows:
 array-name [index]

The number of elements in the array is equal to:
 (hi-index - lo-index) + 1

Examples Example 1

DEFINE MONTHLY_TOTALS : &
 ARRAY [1..12] OF ORACLE NUMBER
DEFINE GRAND_TOTAL : ORACLE NUMBER
DEFINE IX : ORACLE NUMBER

SETVAR GRAND_TOTAL = 0
SETVAR IX = 1
WHILE IX <= 12
 SETVAR GRAND_TOTAL = &
 GRAND_TOTAL + MONTHLY_TOTALS[IX]
 SETVAR IX = IX + 1
ENDWHILE

 Defines MONTHLY_TOTALS as an array of Oracle
numbers. The variables GRAND_TOTAL and IX are
also defined as Oracle numbers. A WHILE loop is
then used to add up each element of
MONTHLY_TOTALS and put the sum into

Data Types Warehouse Data Types

 Chapter Six 361

GRAND_TOTAL.

 Example 2

FORMAT ORD-FMT : RECORD
 CUST-NO : X6
 ORDER-NO : X10
 ORD-DATE : X6
 ORD-AMT : Z10
 END
DEFINE ORDS : &
 ARRAY [1..1000] OF FORMAT ORD-FMT

 Defines ORDS as an array of 1000 order records.

BINARY The BINARY data type represents variable length

binary data.

Syntax BINARY

Display BINARY fields may not be printed.

Family Binary

Technical The byte layout of BINARY items is internal to
Warehouse.

Example DEFINE BIN : BINARY

 Defines BIN as a variable length binary field.

BOOLEAN The BOOLEAN data type represents Boolean, or

true/false data.

Syntax BOOLEAN

Display The default print width of BOOLEAN fields is 6.

Family Logical

Technical The byte layout of BOOLEAN items is internal to
Warehouse.

Range A BOOLEAN item may only represent $TRUE or

Warehouse Data Types Data Types

362 Chapter Six

$FALSE.

Example DEFINE MYFLAG : BOOLEAN
SETVAR MYFLAG = $TRUE

 Defines MYFLAG as a Boolean field, then sets the
value of MYFLAG to $TRUE.

CHAR The CHAR data type represents fixed length

character data.

Syntax CHAR(n)

n specifies the length in bytes of the field.

Display The default print width of CHAR fields is the width
of the field, or n.

Family Character string, fixed length

Technical The byte layout of CHAR items is as follows:

Byte 1 Character 1

Byte 2 Character 2

Byte n Character n

 Size: n bytes

Examples DEFINE CH : CHAR(20)
DEFINE BIGCH : CHAR(2000)

 Defines CH as a 20 byte fixed length character
string. Defines BIGCH as a 2000 byte fixed length
character string.

CHONOS The CHONOS data type represents a 6 byte date and
time.

Syntax CHONOS

Data Types Warehouse Data Types

 Chapter Six 363

Display The default print picture of CHONOS fields is:

 PIC "DD-MON-YYYY HH24:MI:SS"

Family Date

Technical The byte layout of the CHONOS data type is as
follows:

Byte 1 y0 y1 y2 y3 y4 y5 y6 y7
Byte 2 y8 y9 y10 y11 d0 d1 d2 d3
Byte 3 d4 d5 d6 d7 d8 h0 h1 h2
Byte 4 h3 h4 m0 m1 m2 m3 m4 m5
Byte 5 s0 s1 s2 s3 s4 s5 s6 s7
Byte 6 s8 s9 s10 s11 s12 s13 s14 s15

 Size: 6 bytes
 y = year, 1-4095, 12 bits

d = day within year, 1-366, 9 bits
h = hour within day, 0-23, 5 bits
m = minute within hour, 0-59, 6 bits
s = millisecond within minute, 0-59999, 16

bits

Range The range of CHONOS items is:

Maximum: December 31, 4095 AD 23:59
Minimum: January 1, 1 AD 00:00

Examples DEFINE CHRONDAT : CHRONOS

 Defines CHRONDAT as a 6 byte date/time.

DATE The DATE data type represents a calendar date
without a time.

Syntax DATE

Display The default print picture of DATE fields is:

Warehouse Data Types Data Types

364 Chapter Six

 PIC "DD-MON-YYYY"

Family Date

Technical The byte layout of DATE items is internal to
Warehouse.

Range The range of DATE items is:

Maximum: December 31, 9999 AD
Minimum: January 1, 6000 BC

Example DEFINE DAT : DATE

 Defines DAT as a date field.

DATETIME The DATETIME data type represents a calendar

date and a time within the day.

Syntax DATETIME

Display The default print picture of DATETIME fields is:

 PIC "DD-MON-YYYY HH24:MI:SS"

Family Date

Technical The byte layout of DATETIME items is internal to
Warehouse.

Range The range of DATETIME items is:

Maximum: December 31, 9999 AD 00:00
Minimum: January 1, 6000 BC 23:59

Example DEFINE DTM : DATETIME

 Defines DTM as a date and time field.

FLOAT The FLOAT data type represents floating point

data.

Syntax FLOAT

Data Types Warehouse Data Types

 Chapter Six 365

Display The default print picture of FLOAT fields is:

 PIC "-(9)9.9(6)"

Family Numeric, floating point

Technical The byte layout of FLOAT items is internal to
Warehouse.

Range A FLOAT item may contain virtually any exponent,
but performance degrades as the exponent gets
larger. The precision of FLOAT items is 77 digits of
accuracy.

Example DEFINE MYFLT : FLOAT
SETVAR MYFLT = -1234.56

 Defines MYFLT as a variable length numeric field
and sets the value of MYFLT to -1234.56.

INTEGER The INTEGER data type represents variable length

integer data.

Syntax INTEGER

Display There is no specific default print picture for
INTEGER fields. By default the entire field is
printed.

Family Numeric

Technical The byte layout of INTEGER items is internal to
Warehouse.

Range Any size of positive and negative integers may be
represented with the type INTEGER.

Example DEFINE MYINT : INTEGER
SETVAR MYINT = -1234

 Defines MYINT as a variable length numeric field
and sets the value of MYINT to -1234.

Warehouse Data Types Data Types

366 Chapter Six

INTERVAL The INTERVAL data type represents a difference

between two dates and times. An interval is stored
as a positive or negative number of days and a
positive number of hours.

Syntax INTERVAL

Display The default print picture of INTERVAL fields is:

 PIC "NNNNNN HH24:MI:SS"

Family Date

Technical The byte layout of INTERVAL items is internal to
Warehouse.

Example DEFINE INT : INTERVAL

 Defines INT as an interval.

NSTRING The NSTRING data type represents variable length

native (double byte) character data.

Syntax NSTRING

Display There is no specific default print width for
NSTRING fields. By default the entire field is
printed.

Family Character string, native

Technical The byte layout of NSTRING fields is internal to
Warehouse.

NSTRING items are automatically converted
to STRING items where appropriate.

Example DEFINE MYSTR : NSTRING
SETVAR MYSTR = "Taurus Software"

 Defines MYSTR as a variable length native
character string and sets its value to Taurus
Software.

Data Types Warehouse Data Types

 Chapter Six 367

NUMERIC The NUMERIC data type represents variable length
numeric data.

Syntax NUMERIC

Display The default print picture of NUMERIC fields is:

 PIC "-(9)9.9(6)"

Family Numeric

Technical The byte layout of NUMERIC items is internal to
Warehouse.

Range Any size of positive and negative numbers with
decimal points may be represented with the type
NUMERIC.

Example DEFINE MYNUM : NUMERIC
SETVAR MYNUM = -1234.56

 Defines MYNUM as a variable length numeric field
and sets the value of MYNUM to -1234.56.

RECORD The RECORD type is used to represent data records

containing multiple fields.

Syntax Record definitions may only be used in the DEFINE
and FORMAT statements. The syntax is as follows:

 DEFINE var-name : RECORD
 field-1 : type-1 [OFFSET offset-1]
 field-2 : type-2 [OFFSET offset-2]
 .
 .
 .
END

 or

 FORMAT fmt-name : RECORD
 field-1 : type-1 [OFFSET offset-1]
 field-2 : type-2 [OFFSET offset-2]
 .

Warehouse Data Types Data Types

368 Chapter Six

 .
 .
END

 When a RECORD is specified with the DEFINE
statement, a variable is created named var-name
along with the storage for the record.

 When a RECORD is specified with the FORMAT
statement, a format specification called fmt-name
is defined for later use by a READ or DEFINE
statement. No storage is created for the record.

Display Records are printed by field with each field
separated by one space.

Family Data structure

Technical The byte layout of records depends on the fields
within the record. The alignment of each field is
adjacent to the previous field with no filler. The
exception to this is Warehouse data types, which
may be 4 byte aligned, and the SQL _ data types
which are aligned depending upon the type.

 If OFFSET is specified for the field, the field is
placed starting at the byte position indicated with
offset 1 being the beginning of the record. If no
OFFSET is specified, the field is placed at the end of
the record. Using OFFSET allows overlapping fields
to be created.

Examples FORMAT ORD-FMT : RECORD
 CUST-NO : X6
 ORDER-NO : X10
 ORD-DATE : X6
 ORD-AMT : Z10
 END
DEFINE ORD-REC : FORMAT ORD-FMT

 Defines ORD-FMT as the record layout of an order
containing 4 fields, and a record width of 32 bytes.
The variable ORD-REC is created using the DEFINE
statement. 32 bytes of storage are allocated for
ORD-REC.

Data Types Warehouse Data Types

 Chapter Six 369

SIGNED The SIGNED data type represents fixed point signed
numeric data.

Syntax SIGNED (n)
 or
SIGNED (n,m)

n specifies the maximum number of digits the field
may hold, including digits to the right of the
decimal point.

If m is specified, m indicates the number of digits to
the right of the decimal point the field may hold. If
m is not specified, m is assumed to be 0. m must be
from 0 to n.

Display The default print picture of SIGNED fields is:

 PIC "-(n-m)9.9(m)" for m > 0
 PIC "-(n)9" for m = 0

Family Numeric

Technical The byte layout of SIGNED type items is as follows
when m > 0:

Byte 1 Sign

Byte 2 Digit 1

Byte n-m+2 Decimal point ‘0’
 0 0 1 0 1 1 1 0

Byte n+1 Digit n

Byte n+2 Digit n

SIGNED type items require one byte per digit stored
(n), plus one byte for the sign, plus one byte for the
decimal point.

Warehouse Data Types Data Types

370 Chapter Six

 Size: n + 2 bytes for m > 0
 n + 1 bytes for m = 0

Range The range of SIGNED items is:

Maximum: +99..99 with n - m digits
Minimum: -99..99 with n - m digits

Examples DEFINE DEC : SIGNED (6)
DEFINE AMT : SIGNED (10,2)

 Defines DEC as a 7 byte fixed decimal integer that
can hold up to 6 digits. The default print picture
for DEC is "-(6)9". Defines AMT as a 12 byte fixed
decimal integer that can hold up to 10 digits: 8
digits to the left of the decimal point, and 2 digits
to the right of the decimal point. The default print
picture for AMT is "-(8)9.9(2)"

STRING The STRING data type represents variable length
character data.

Syntax STRING

Display There is no specific default print width for STRING
fields. By default the entire field is printed.

Family Character string

Technical The byte layout of STRING fields is internal to
Warehouse.

Example DEFINE MYSTR : STRING
SETVAR MYSTR = "Taurus Software"

 Defines MYSTR as a variable length character field
and sets its value to Taurus Software.

TIME The TIME data type represents a time within the

day without an associated date.

Syntax TIME

Data Types Warehouse Data Types

 Chapter Six 371

Display The default print picture of DATETIME fields is:

 PIC "HH24:MI:SS"

Family Date

Technical The byte layout of TIME items is internal to
Warehouse.

Range The range of TIME items is:

Maximum: 23:59:59
Minimum: 00:00:00

Example DEFINE TIM : TIME

 Defines TIM as a date field.

UNSIGNED The UNSIGNED data type represents fixed point
unsigned numeric data.

Syntax UNSIGNED (n)
 or
UNSIGNED (n,m)

n specifies the maximum number of digits the field
may hold, including digits to the right of the
decimal point.

If m is specified, m indicates the number of digits to
the right of the decimal point the field may hold. If
m is not specified, m is assumed to be 0. m must be
from 0 to n.

Display The default print picture of UNSIGNED fields is:

 PIC "(n-m)9.9(m)" for m > 0
 PIC "(n)9" for m = 0

Family Numeric

Technical The byte layout of UNSIGNED type items is as
follows when m > 0:

Warehouse Data Types Data Types

372 Chapter Six

Byte 1 Digit 1

Byte 2 Digit 2

Byte n-m+1 Decimal point ‘0’
 0 0 1 0 1 1 1 0

Byte n Digit n

Byte n+1 Digit n

UNSIGNED type items require one byte per digit
stored (n) plus one byte for the decimal point.

 Size: n + 1 bytes for m > 0
 n bytes for m = 0

Range The range of UNSIGNED items is:

Maximum: +99..99 with n - m digits
Minimum: 0

Examples DEFINE DEC : UNSIGNED (6)
DEFINE AMT : UNSIGNED (10,2)

 Defines DEC as a 6 byte fixed unsigned integer that
can hold up to 6 digits. The default print picture
for DEC is "(6)9". Defines AMT as a 11 byte fixed
unsigned integer that can hold up to 10 digits: 8
digits to the left of the decimal point, and 2 digits
to the right of the decimal point. The default print
picture for AMT is "(8)9.9(2)"

Installation and Execution

- Chapter Seven 373

Chapter Seven

Installation and Execution

 Installation and Execution

374 Chapter Seven -

Warehouse is installed and run differently on each
supported platform. This chapter contains a
section on how the installation is performed, how to
run Warehouse, and how the Warehouse server
program is set up for each of the supported
platforms.

Installation and Execution Warehouse Client / Server

 Chapter Seven 375

Warehouse Client The Warehouse client program is the program that
is run by users and processes Warehouse scripts.
When the Warehouse client program is run it may
be given options and a script file name on the
command line. When a script file name is on the
command line Warehouse processes the script file
like the XEQ command.

Client Options The Warehouse client program may be run with
the following command line options (case
insensitive):

 -connect Causes Warehouse to enter a special
mode for checking Warehouse server
connections. -connect may be
abbreviated as -c.

 -nostats Causes statistics to be suppressed
after the script has completed. Using
-nostats in the command line has
the same effect as putting SET STATS
OFF in the script.

 -pause Causes Warehouse to prompt the user
to press ENTER before exiting. This
can be useful in a Windows
environment where the window is
closed after Warehouse exits. -pause
may be abbreviated as -p.

 -showversion Displays the version number of the
program and exits. This option can be
used to verify the Warehouse client
program can be run.

 -start Causes the Warehouse banner to be
suppressed and when run with a
script file name, the script is processed
without displaying the lines just like

Installations and Execution Warehouse Client / Server

376 Chapter Seven

the START statement.

 -validate Causes Warehouse to display a menu
for validating Warehouse. This is
typically done by the system
administrator as part of an
installation or upgrade. -validate
may be abbreviated as -v.

 -showinfo Displays the Warehouse operating
environment. When either the
Warehouse client or server is run with
-showinfo, the operating
environment is displayed. The syntax
is :

 warehouse -showinfo [output-file]

If output-file is specified, the
information is written to the specified
file.

 The -showinfo information looks like this:

Program version : Warehouse 3.00.4377-W
Program name :

d:\wh\current\whide\wh.exe
Warehouse home : d:\wh\current\whide\
Operating system : MS Windows
System ID : 000cf1d8eda7
Validation status : Production
System name : CAESAR
User login name : Administrator
Word size : 32 bits (Little

endian)
Current date and time : 10-OCT-2004

08:23:52
File system : Static
Posix libraries : Unavailable
TurboIMAGE : Unavailable
ODBC libraries : Available
Oracle : Available (Dynamic)
Oracle 8 features : Available (Dynamic)

 Program version - This is version of the
Warehouse program.

Installation and Execution Warehouse Client / Server

 Chapter Seven 377

 Program name - This is the name of Warehouse

program.

 Warehouse client program - Indicates the
name of the Warehouse client program. Only the
Warehouse server displays this value. It is
necessary for the server to be able to find the client
program when using DataBridger Studio job
control features.

 Warehouse program type - Indicates the type of
the Warehouse program. This value is "Server" for
the Warehouse server program and is not displayed
for the Warehouse client program.

 Warehouse home - This is the directory where
Warehouse looks for its files. This includes the
validation file and configuration files such as
CHARMAPS.

 Operating system - This is operating system
under which the Warehouse program was
compiled. It corresponds to the last character of
the Warehouse version as follows:

A - DEC Alpha (No longer supported)
C - SCO (No longer supported)
F - HP-UX PA RISC 2.0 (No longer

supported)
G – HP-UX Itanium
H - HP-UX PA RISC 1.1
I - SGI IRIX (No longer supported)
J – SunOS 5.10 Solaris X86
L – Red Hat Linux
M - MPE/iX
Q – AS/400
R - IBM RS/6000 AIX
S – SunOS/Solaris SPARC
T – Debian Linux
U – Microsoft Windows x64
V - DEC VMS (No longer supported)
W - MS Windows
X – Unknown

 System ID - This is the unique system ID for the

system on which Warehouse is running.

Installations and Execution Warehouse Client / Server

378 Chapter Seven

 Validation status - Shows the status of the

Warehouse validation as follows:

Production Indicates Warehouse has been
validated for production.

Expires on <date> Indicates a
demonstration version that expires on the
date shown.

Expired on <date> Indicates an expired
demonstration version that expired on
the date shown.

Needs validation Indicates that
Warehouse needs to be validated before it
can be run.

 System name - This is the system name of the

system on which Warehouse is running. This name
is determined by the system network configuration.
This name may be important when setting up the
AUTHFILE for Warehouse server access.

 User login name - This is the name of the login
user as indicated by the system. This name may be
important when setting up the AUTHFILE for
Warehouse server access.

 Word size - indicates the hardware environment
under which the Warehouse program was
compiled. Currently all supported platforms are 32
bits. Big endian indicates forward byte ordering
(e.g. 0x01020304 is stored as 0x01 0x02 0x03 0x04)
and Little endian indicates backward byte ordering
(e.g. 0x01020304 is stored as 0x04 0x03 0x02 0x01)

 Current date and time - Indicates the system
clock time as determined by the C library. This
may be different than other methods of
determining the system time, particularly on
MPE/iX.

 OS Date conflicts - Indicates the system clock
as determined by operating system calls conflicts
with the C library clock. This time is only displayed
if there is a conflict with C library date and time.

Installation and Execution Warehouse Client / Server

 Chapter Seven 379

This value is often displayed on MPE/iX when the
TZ environment variable is not set or is set
incorrectly.

 File system - Indicates which file system is used
by the Warehouse program. This is always "Static"
except on HP-UX platforms. The values are:

Static Indicates the standard file system.
Static (Dyn load err) Indicates the

standard file system after an attempt to
dynamically load the HP-UX 64-bit file
system failed. (Only used on HP-UX)

Dynamic Indicates the standard file system
was dynamically loaded.

Dynamic 64 bit Indicates the HP-UX 64-bit
file system was dynamically loaded.
(Only used on HP-UX)

 Posix libraries - Indicates whether the Posix

libraries are used. The value of the does not
matter, except on MPE/iX. On MPE/iX, it is
possible some file operations may generate
different results if the Posix libraries are used.
On MPE/iX, both Posix and non-Posix versions
of Warehouse are shipped.

 HP-UX Trusted system - (Only on HP-UX)
Indicates if the system is considered a trusted
system. Trusted systems use a different method for
password verification when a client connects to the
Warehouse server. A trusted system is indicated
by the presence of the file
/tcb/files/auth/system/default

 TurboIMAGE - Indicates whether IMAGE is
available or not. Always "Available" on MPE/iX,
and always "Unavailable" on other platforms. This
may change some day with the implementation of
Eloquence.

 ODBC libraries - Indicates whether the ODBC are
available or not. Always "Available" on Windows,
and always "Unavailable" on other platforms

Installations and Execution Warehouse Client / Server

380 Chapter Seven

except for IBM RS/6000. On the IBM RS/6000,
"Available" indicates that DB2 may be accessed
and “Unavailable" indicates that DB2 may not be
accessed.

 Oracle - Indicates whether the Oracle is available
and the method used to link the Oracle libraries.
Values are:

Unavailable Indicates Oracle is not
available with this Warehouse program.

Unavailable (Dynamic) Indicates Oracle is
not available with this Warehouse
program after an attempt was made to
dynamically load the Oracle OCI calls.
This may be able to be corrected by
setting environment variables such as
ORACLE_HOME.

Available (Static) Indicates Oracle is
available with this Warehouse program
and the Oracle OCI libraries were linked
at compile time.

Available (Dynamic) Indicates Oracle is
available with this Warehouse program
and the Oracle OCI libraries were linked
at run time.

 Oracle 8 features - Indicates whether the

Oracle 8.1 OCI features are available. These
features are necessary for accessing CLOB and BLOB
data in tables. These features are always
dynamically loaded.

Unavailable (Dynamic) Indicates Oracle
8.1 OCI features for CLOB/BLOB access
are not available after an attempt was
made to dynamically load the Oracle OCI
calls. It may be possible to correct this by
setting environment variables such as
WHORACLE8LIB.

Available (Dynamic) Indicates Oracle 8.1
OCI features for CLOB/BLOB access are
available after linking them at run time.

Installation and Execution Warehouse Client / Server

 Chapter Seven 381

 Examples Example 1

/usr/local/taurus/whii/warehouse myscript

This example runs the Warehouse client on Unix or
an AS400 which processes the Warehouse script file
myscript like the XEQ command.

 Example 2

RUN WH.WHII.TAURUS;INFO="-NOSTATS -START SCRIPT2"

This example runs the Warehouse client on MPE/iX
using the -nostats and -start options which
suppress the Warehouse banner, statistics and
display of the script file SCRIPT2 as it is processed.

 Example 3

C:\Program Files\Taurus\Warehouse\wh -pause

This example runs the Warehouse client on Windows
using the -pause option causing Warehouse to
prompt the user to press ENTER before Warehouse
exits.

Warehouse Server The Warehouse server program is a program that
runs in the background and receives connections
from Warehouse clients when they connect to a
REMOTE database. The server program must run
with privileges that allow it to change the login to
the user connection. For security reasons a file
called the AUTHFILE is set up by the system
administrator and is used by the server to
determine how connections can be made.

Process ID For non-Windows systems, the process id (pid) of
the main Warehouse server process is written to a
file in the same directory in which the server
program resides. The pid file is called WHSPID.
Signals can be sent to Warehouse server processes
by logging in as root (superuser) and using the kill
command with the process as a parameter:
 Kill 'cat /home/taurus/whii/WHSPID'

Installations and Execution Warehouse Client / Server

382 Chapter Seven

If the main Warehouse server process receives a
SIGTERM signal (the default for the kill command),
all child processes are sent a SIGTERM and then the
main server process exits.

If a child Warehouse server process (i.e. one that is
processing requests from a Warehouse script or
from DataBridger Studio) receives a SIGTERM
signal, WHERR 20035 is sent to the client program
and then the server process exits.

If the main Warehouse server process receives a
SIGUSR1 signal (i.e. kill -SIGUSR1), a list of
child processes is written to the file WHPROCS in the
same directory as the server program.

Server Options The Warehouse server program may be run with
the following command line options (case
insensitive):

 -authfile Causes Warehouse to display a
menu for editing the AUTHFILE.
(The Warehouse client also accepts
this option, but may not be able to
access or write to the AUTHFILE.)
-authfile may be abbreviated as
-a.

 -port n Causes the Warehouse server to
receive connections on port n
instead of the usual Warehouse
port 1610. For a Warehouse client
to connect to a port other than the
default port (1610), the port
number must be specified after the
system name using a colon
separator in the OPEN statement.
Example:

OPEN DB REMOTE &
 REMSYS:32400 &
 USER=RUSER PASS=RPASS &
 ORACLE SCOTT/TIGER

Installation and Execution Warehouse Client / Server

 Chapter Seven 383

 –serverinfo used to display the Warehouse

operating environment for a
remote Warehouse server. The
syntax is:

 warehouse -serverinfo [server-name]

 If server-name is specified,

information is displayed for the
server. If server-name is not
specified, the user is prompted for
the server name. The information
displayed is the same as the -
showinfo information documented
below with the addition of the
following information:

Warehouse program type : Server
Server IP Address : #.#.#.#

(server.taurus.com)
Client IP Address : #.#.#.#

(client.taurus.com)

This option also shows job
control databases on the
server.

 -showversion Displays the version number of

the program and exits. This option
can be used to verify the
Warehouse server program can be
run.

 -showinfo Displays the Warehouse operating

environment. When either the
Warehouse client or server is run
with -showinfo, the operating
environment is displayed. The
syntax is:

 warehouse -showinfo [output-file]

 If output-file is specified, the

information is written to the
specified file.

Installations and Execution Warehouse Client / Server

384 Chapter Seven

The -showinfo information looks
like this:

Program version :Warehouse 3.00.4377-W
Program name :

d:\wh\current\whide\wh
.exe

Warehouse client program
 : C:\Program

Files\TAURUS\Warehouse
\WH.EXE

Warehouse home : d:\wh\current\whide\
Operating system : MS Windows
System ID : 000cf1d8eda7
Validation status : Production
System name : CAESAR
User login name : Administrator
Word size : 32 bits (Little

endian)
Current date and time
 : 10-OCT-2004 08:23:52
File system : Static
Posix libraries : Unavailable
TurboIMAGE : Unavailable
ODBC libraries : Available
Oracle : Available (Dynamic)
Oracle 8 features : Available (Dynamic)
Job control databases
 : None

 Program version - This is
version of the Warehouse program.

 Program name - This is the name
of Warehouse program.

 Warehouse client program -
Indicates the name of the
Warehouse client program. Only
the Warehouse server displays this
value. It is necessary for the
server to be able to find the client
program when using DataBridger
Studio job control features.

 Warehouse program type -
Indicates the type of the
Warehouse program. This value is

Installation and Execution Warehouse Client / Server

 Chapter Seven 385

"Server" for the Warehouse server
program and is not displayed for
the Warehouse client program.

 Warehouse home - This is the
directory where Warehouse looks
for its files. This includes the
validation file and configuration
files such as CHARMAPS.

 Operating system - This is
operating system under which the
Warehouse program was compiled.
It corresponds to the last character
of the Warehouse version as
follows:

A - DEC Alpha (No longer

supported)
C - SCO (No longer

supported)
F - HP-UX 11
H - HP-UX
I - SGI Irix
L - Linux
M - MPE/iX
R - IBM RS/6000
S - SunOS
V - DEC VMS (No longer

supported)
W - MS Windows
X – Unknown

 System ID - This is the unique

system ID for the system on which
Warehouse is running.

 Validation status - Shows the

status of the Warehouse validation
as follows:

Production Indicates

Warehouse has been validated
for production.

Expires on <date> Indicates a
demonstration version that

Installations and Execution Warehouse Client / Server

386 Chapter Seven

expires on the date shown.
Expired on <date> Indicates

an expired demonstration
version that expired on the date
shown.

Needs validation Indicates
that Warehouse needs to be
validated before it can be run.

 System name - This is the system

name of the system on which
Warehouse is running. This name
is determined by the system
network configuration. This name
may be important when setting up
the AUTHFILE for Warehouse
server access.

 User login name - This is the

name of the login user as indicated
by the system. This name may be
important when setting up the
AUTHFILE for Warehouse server
access.

 Word size - indicates the

hardware environment under
which the Warehouse program was
compiled. Currently all supported
platforms are 32 bits. Big endian
indicates forward byte ordering
(e.g. 0x01020304 is stored as 0x01
0x02 0x03 0x04) and Little endian
indicates backward byte ordering
(e.g. 0x01020304 is stored as 0x04
0x03 0x02 0x01)

 Current date and time -

Indicates the system clock time as
determined by the C library. This
may be different than other
methods of determining the system
time, particularly on MPE/iX.

Installation and Execution Warehouse Client / Server

 Chapter Seven 387

 OS Date conflicts - Indicates
the system clock as determined by
operating system calls conflicts
with the C library clock. This time
is only displayed if there is a
conflict with C library date and
time. This value is often displayed
on MPE/iX when the TZ
environment variable is not set or
is set incorrectly.

 File system - Indicates which

file system is used by the
Warehouse program. This is
always "Static" except on HP-UX
platforms. The values are:

Static Indicates the standard

file system.
Static (Dyn load err)

Indicates the standard file
system after an attempt to
dynamically load the HP-UX 64-
bit file system failed. (Only
used on HP-UX)

Dynamic Indicates the standard
file system was dynamically
loaded.

Dynamic 64 bit Indicates the
HP-UX 64-bit file system was
dynamically loaded. (Only used
on HP-UX)

 Posix libraries - Indicates

whether the Posix libraries are
used. The value of the does not
matter, except on MPE/iX. On
MPE/iX, it is possible some file
operations may generate different
results if the Posix libraries are
used. On MPE/iX, both Posix and
non-Posix versions of Warehouse
are shipped.

Installations and Execution Warehouse Client / Server

388 Chapter Seven

 HP-UX Trusted system - (Only
on HP-UX) Indicates if the system
is considered a trusted system.
Trusted systems use a different
method for password verification
when a client connects to the
Warehouse server. A trusted
system is indicated by the presence
of the file
/tcb/files/auth/system/defau
lt

 TurboIMAGE - Indicates whether

IMAGE is available or not. Always
"Available" on MPE/iX, and always
"Unavailable" on other platforms.
This may change some day with
the implementation of Eloquence.

 ODBC libraries - Indicates

whether the ODBC are available or
not. Always "Available" on
Windows, and always
"Unavailable" on other platforms
except for IBM RS/6000. On the
IBM RS/6000, "Available" indicates
that DB2 may be accessed and
“Unavailable" indicates that DB2
may not be accessed.

 Oracle - Indicates whether the

Oracle is available and the method
used to link the Oracle libraries.
Values are:

Unavailable Indicates Oracle is

not available with this
Warehouse program.

Unavailable (Dynamic)
Indicates Oracle is not available
with this Warehouse program
after an attempt was made to
dynamically load the Oracle
OCI calls. This may be able to

Installation and Execution Warehouse Client / Server

 Chapter Seven 389

be corrected by setting
environment variables such as
ORACLE_HOME.

Available (Static) Indicates
Oracle is available with this
Warehouse program and the
Oracle OCI libraries were
linked at compile time.

Available (Dynamic)
Indicates Oracle is available
with this Warehouse program
and the Oracle OCI libraries
were linked at run time.

 Oracle 8 features - Indicates

whether the Oracle 8.1 OCI
features are available. These
features are necessary for
accessing CLOB and BLOB data in
tables. These features are always
dynamically loaded.

Unavailable (Dynamic)

Indicates Oracle8.1 OCI
features for CLOB/BLOB access
are not available after an
attempt was made to
dynamically load the Oracle
OCI calls. It may be possible to
correct this by setting
environment variables such as
WHORACLE8LIB.

Available (Dynamic) Indicates
Oracle 8.1 OCI features for
CLOB/BLOB access are available
after linking them at run time.

 Job Control databases –

Shows the contents of the job
control database WHCTLDBS that
were set up through DataBridger
Studio.

 Examples Example 1

Installations and Execution Warehouse Client / Server

390 Chapter Seven

/usr/local/taurus/whii/whserv -port 32400 &

This example runs the Warehouse server as a
background process on Unix using the -port option
causing Warehouse to listen for client connections on
port 32400.

INI File The Warehouse .ini file contains initial values for
Warehouse SET options. On entry, Warehouse
searches for a file called wh.ini or WHINI in the
same directory as the Warehouse program. If a .ini
file is found, it is opened and the options are
processed. The file layout is similar to .ini files in
the Microsoft Windows environment. The first line
must contain [Warehouse] and subsequent lines
are used to set initial values for global options.
Options are set using the syntax:

 option-name = option-value

Options available within the Warehouse .ini file
are: AUTOPAD, MSGS, PAGELENGTH, PAGEWIDTH,
START, and STATS. See the SET statement for
information on option details. Options in the .ini
file may be overridden within a script using the
SET statement.

Example WH.INI file:

[Warehouse]
AUTOPAD=ON
PAGELENGTH=59

The above Warehouse .ini file sets the AUTOPAD
option to ON and the PAGELENGTH to 59 when the
Warehouse client is run.

Installation and Execution MPE/iX

 Chapter Seven 391

Installation on
MPE/iX

On MPE/iX Warehouse is installed by the installation
program developed by Taurus Software called EZ-
Install/3000. All Warehouse files are installed into the
WHII group of the TAURUS account. If the MPE/iX
system is not attached to a network, then tape media
will be required. To install Warehouse on MPE/iX,
proceed as follows:

Web download 1. Start Reflection on PC where the self-extracting file
named whii.wrq is located.

 2. Logon to the target MPE/iX as MANAGER.SYS,PUB

 3. Using Reflection, transfer whii.wrq with the

Transfer Type attribute set to Labels.

 4. Run the resulting WHII program: RUN WHII

 5. The program WHII automatically builds the
account TAURUS. When prompted for the TAURUS
account password enter an account password of
your choosing (it will not be displayed), and enter
the same password again for verification, when
prompted.

 6. When prompted for your Warehouse validation

code, enter the demonstration validation code
provided by your Taurus Support representative.

 7. The WHII program then proceeds to restore all

Warehouse files. This may take a few minutes.
Once the files have been restored, your Warehouse
installation will be complete.

Tape Install 1. Logon as MANAGER.SYS,PUB

 2. Issue a :FILE command for the tape drive:

FILE TAURUS;DEV=TAPE

 3. Restore the self-installing program:

RESTORE *TAURUS;TAURUSWH;SHOW

MPE/iX Installation and Execution

392 Chapter Seven

 4. Mount the Warehouse product tape and put the

tape drive ONLINE. Then reply to the tape mount
request.

 5. After the program TAURUSWH has been restored,

dismount the tape and run TAURUSWH:

RUN TAURUSWH

 6. Proceed with steps 5 through 7 listed in the web

download instructions above.

MPE/iX
Installation
Considerations

The WHII program contains all Warehouse files needed
to complete the installation. This program must be run
from a user possessing SM (System Manager)
capability.

 If you are installing Warehouse on several systems, you
may find it easier to DSCOPY WHII.PUB.SYS to the
other systems, rather than using the tape drive. To
complete the installation after moving
TAURUSWH.PUB.SYS, perform the steps listed above,
beginning at step 4.

 If you wish to install Warehouse into an account other
than TAURUS, you may run the WHII program with INFO
parameter ALTACCT. (e.g. RUN
TAURUSWH;INFO="ALTACCT") When run with
ALTACCT, WHII prompts you for the name of account
into which you wish the Warehouse files are to be
installed.

 If you should ever need to reinstall Warehouse, the
WHII program may be run again to perform the
reinstallation.

 After the Warehouse installation has been completed,
you may purge the WHII program since it is no longer
needed.

Running the By default, the Warehouse program file is called WH and

Installation and Execution MPE/iX

 Chapter Seven 393

Warehouse
client on
MPE/iX

resides within the group WHII.TAURUS. To run the
Warehouse client and then run a script within the
client, enter:

 :RUN WH.WHII.TAURUS
Warehouse 2.03.0001-M (c) Taurus
Software, Inc. 1997
Installed for: Taurus Software, Inc.
1> XEQ MYSCRIPT

 If you wish to execute a particular Warehouse script at
the command line, put the name of the script file in the
INFO= parameter of the RUN command. For example:

 :RUN WH.WHII.TAURUS;INFO="MYSCRIPT"
Warehouse 2.03.0001-M (c) Taurus
Software, Inc. 1997
Installed for: Taurus Software, Inc.
1> OPEN ORD IMAGE ORDB PASS=READER

MODE=5

 If you wish, you may shorten the above by leaving off
the RUN and INFO="" as follows:

 :WH.WHII.TAURUS MYSCRIPT
Warehouse 2.03.0001-M (c) Taurus
Software, Inc. 1997
Installed for: Taurus Software, Inc.
1. OPEN ORD IMAGE ORDB PASS=READER

MODE=5

Running the
Warehouse
Server on
MPE/iX

By default, the Warehouse Server program file is called
WHSERV and resides within the group WHII.TAURUS. Be
sure that the Warehouse installation has been validated
before launching the Warehouse Server job. On
MPE/iX, the Warehouse server is typically run as a job
stream that logs on as manager.sys. It needs to be
streamed by someone or something logged on as
manager.sys or the job card in the job stream needs to
provide the password. The job card looks like this:

!JOB JWHSERVR,MANAGER.SYS;HIPRI;
OUTCLASS=,1;PRI=CS

If your logon requires a password, add your password
where pass is below:

MPE/iX Installation and Execution

394 Chapter Seven

!JOB JWHSERVR,MANAGER/pass.SYS;HIPRI;
OUTCLASS=,1;PRI=CS

There is a sample job stream called JWHSERVR supplied
with the installation

 The Warehouse server program cannot be run directly
after installation because it must reside in a group with
PM (Privileged Mode) capability. PM capability is
required by Warehouse to perform the user password
checking and login that is done when making a REMOTE
connection. You may solve this problem one of two
ways. You may either add PM capability to the
WHII.TAURUS group and account using:

 :HELLO MANAGER.SYS
:ALTACCT TAURUS;CAP=+PM
:ALTGROUP WHII.TAURUS;CAP=+PM

 In which case the server job could look as follows:

 !JOB WHSERVER,MGR.TAURUS

!RUN WHSERV.WHII
!EOJ

 Alternatively, you may copy the server program to a

group that has PM capability, such as PUB.SYS. If you
copy the server program, you must set the variable
WHHOME to point back to the original group before
running the server program. The WHHOME variable
allows Warehouse to find the files necessary to run. Use
SETVAR to set WHHOME to the fully qualified group name
of the location of the Warehouse files and place an At
sign (@) where the file name would normally go.
Example:

 !JOB WHSERVER,MANAGER.SYS
!COPY

WHSERV.WHII.TAURUS,WHSERV.PUB;YES
!SETVAR WHHOME, "@.WHII.TAURUS"
!RUN WHSERV.PUB
!EOJ

Modifying the
authorization

Before Warehouse clients may connect to the Warehouse
server, the authorization file AUTHFILE must be set up to

Installation and Execution MPE/iX

 Chapter Seven 395

file on MPE/iX allow remote connections. This may done by running
either the Warehouse client program WH or the
Warehouse server program WHSERV using INFO="-a".
Example:

 :RUN WH.WHII.TAURUS;INFO="-a"

 For information on authorizing Warehouse server access
and the AUTHFILE, see the section later in this chapter
titled Authorizing Warehouse Server Access.

Stopping the
Warehouse
Server on
MPE/iX

The Warehouse server job is stopped with the ABORTJOB
command. Make sure that there is no Warehouse
activity before stopping the Warehouse Server job.
Example:

 :HELLO MANAGER.SYS
:SHOWJOB JOB=@J;EXEC

JOBNUM STATE IPRI ... JOB NAME
#J55 EXEC ...

WHSERVER,MGR.
TAURUS

JOBFENCE= 6; JLIMIT=10; SLIMIT=100

:ABORTJOB #J55

Unix/Linux Installation and Execution

396 Chapter Seven

Installation on
Unix / Linux

On Unix/Linux, Warehouse is available as a tar file
and all files are restored using the tar command. All
Warehouse files are installed into a new directory
called taurus/whii within the current working
directory. To install Warehouse on Unix, proceed as
follows:

Web download 1. Login to your Unix system.

 2. If transferring the software distribution from
another system, use binary transfer mode.

 3. Transfer or copy the distribution to the directory

where you wish the Warehouse files to be
installed. Typical selection is a globally-accessible
directory such as /usr/local or /opt.

 4. If the Warehouse distribution has a tar.gz suffix,

use gzip or gunzip to restore the tar file; if it has
a tar.Z suffix, use uncompress to restore it.

 5. Untar the distribution: Warehouse files will be

placed in the subdirectory taurus/whii.

6. After the Warehouse files have been restored, the

Warehouse program must be validated.

 7. After the Warehouse files have been restored, the
distribution tar file can be removed.

Tape install 1. Insert the Warehouse tape into the tape drive
connected to your system if installing from DAT
media.

 2. Using the command cd, change to the directory
where the Warehouse files will be installed

cd /usr/local

 3. Restore the Warehouse files using the device name
of your tape drive.

tar xf /dev/rmt/0m.

Installation and Execution Unix/Linux

 Chapter Seven 397

 4. Proceed with steps 4 through 7 listed in the web

download instructions above.

Unix/Linux
Installation
Considerations

Certain browsers with certain settings will
preemptively change the tar.Z or tar.gz suffix of
the download package to a tar.tar suffix. If this
happens to you, enclose the distribution package
name in double quotes when performing the Save As
operation.

When Warehouse is installed, the login user becomes
the creator of all the Warehouse files.

 Typically Warehouse is installed in a globally
accessible directory such as /usr/local.

Running the
Warehouse Client
on Unix/Linux

By default, the Warehouse program file is called
warehouse and resides within the installation
directory. To run Warehouse and execute a script,
enter:

 $ /usr/local/taurus/whii/warehouse
Warehouse 2.02.0001-H (c) Taurus

Software, Inc. 1996
Installed for: Taurus Software, Inc.
1> xeq myscript

 If you wish to execute a particular Warehouse script
at the command line, put the name of the script file
as a command parameter. Example:

 $ /usr/local/taurus/whii/warehouse
myscript

 In order for Warehouse to execute, it must have
access to the directory where the Warehouse message
files are located. This is usually in the same
directory as the Warehouse program and Warehouse
finds the files by examining the command line that
executed Warehouse. In some circumstances (such as
when Warehouse is executed via a soft link, or when
the Warehouse program has been moved to a

Unix/Linux Installation and Execution

398 Chapter Seven

different directory than the message files) Warehouse
is unable to locate the message files. If Warehouse is
unable to access the message files, Warehouse prints
Warehouse validation error number 20" and
exits. In this event, the WHHOME environment
variable may be set to direct Warehouse to the correct
directory. WHHOME should be set to the directory of
the Warehouse message files, with an At sign (@)
placed where the message file name would go.

Examples Example 1

This example creates a soft link to Warehouse, sets
WHHOME using the Bourne shell, then executes
Warehouse.

 $ ln -s
/usr/local/taurus/whii/warehouse
wh

$ WHHOME=/usr/local/taurus/whii/@
$ export WHHOME
$ wh
Warehouse 2.03.0001-H (c) Taurus

Software, Inc. 1997
Installed for: Taurus Software, Inc.
1> OPEN ORD ORACLE SCOTT/TIGER

 Example 2

This example creates a soft link to Warehouse, sets
WHHOME using the C shell, then executes Warehouse.

 % ln -s
/usr/local/taurus/whii/warehouse
wh

% setenv WHHOME
/usr/local/taurus/whii/@

% wh
Warehouse 2.03.0001-H (c) Taurus

Software, Inc. 1997
Installed for: Taurus Software, Inc.
1> OPEN ORD ORACLE SCOTT/TIGER

Running the
Warehouse Server
on Unix

By default, the Warehouse Server program file is
called whserv and resides within the installation
directory. The Warehouse server must run as root

Installation and Execution Unix/Linux

 Chapter Seven 399

to allow it to change the client login. To enable the
Warehouse server, login as root (or use the su
command) and add the s permission to the
Warehouse server program as follows:

 1. Login as root (or use su)

2. Change to the Warehouse directory:

 # cd /usr/local/taurus/whii

3. Change the Warehouse server owner to root

(uid:gid must be 0:0):

 # chown root:sys whserv

or on Linux:

chown root:root whserv

4. Change the setuid bit to run as root:

 # chmod +s whserv

5. Before Warehouse clients may connect to the

Warehouse server, the authorization file
AUTHFILE must be set up to allow remote
connections. If AUTHFILE does not exist, create
it:

 # touch AUTHFILE

6. Add AUTHFILE entries by running the Warehouse

server program whserv with the parameter –a:

$ /usr/local/taurus/whii/whserv –a

or

whserv -a

For more information see the section later in this
chapter titled Authorizing Warehouse Server
Access.

7. Make sure that your Warehouse installation has

Unix/Linux Installation and Execution

400 Chapter Seven

been properly validated.

8. Launch the server as a daemon using nohup:

nohup /usr/local/taurus/whii/whserv &

The Warehouse server may be run with the -port
parameter to specify a port that is different
from the default 1610. For example:

nohup /usr/local/Taurus/whii/whserv
–port 20001 &

 The Warehouse Server is now running and capable of

servicing Warehouse or DataBridger Studio Client
requests.

Stopping the
Warehouse Server on
Unix

The Warehouse server job is stopped with the kill
command using the pid of the Warehouse server
process. The pid can be found using the ps -aef
command (process status . Often the ps command is
piped to the grep command to search for whserv.
The first field of the ps command contains the pid.
Example:

ps -aef | grep whserv
root 1113 1 0 Jul 19 ? 0:00

/users/whii/inhouse/whserv
kill 1113

Make sure that there is no Warehouse activity before
stopping the Warehouse Server daemon.

Installation and Execution Windows

 Chapter Seven 401

Installation on
Windows

Taurus supports the following Windows Operating
Systems:

Windows 2000/2003/2005
Windows XP

To install Warehouse on a Windows platform,
proceed as follows:

 1. Logon to Windows as Administrator.

 2. Download the Software from the Taurus website:

http://www.taurus.com/support/downloads.htm

Access to the site will require a logon ID and
password that can be obtained by emailing
support@taurus.com.

The software is available in 32 and 64 bit versions
and in compressed .zip format.

 3. Decompress the software and run the installation

program SETUP.EXE

 4. Setup guides you through the restoration of the
Warehouse files. By default, the Warehouse files
are restored to location:

C:\Program Files\Taurus\Warehouse

or for 64 bit systems:

C:\Program Files\Taurus\Warehouse64

 5. After the Warehouse files have been restored,
the Warehouse program must be validated by
running the Warehouse program WH.EXE with
the -v option as follows:

Launch a Command Prompt window (MS DOS
prompt) and enter:

C: Installation drive
cd \Program Files\Taurus\Warehouse

Windows Installation and Execution

402 Chapter Seven

WH -v

For information on validation, see the section
later in this chapter titled Validating
Warehouse.

Windows
Installation
Considerations

On older Windows versions the Change Directory
(cd) command must contain quotation marks if the
path name contains a space as Program Files does
in this case. Example:

cd "\Program Files\Taurus\Warehouse"

Running the
Warehouse Client
on Windows

The Warehouse client program WH.EXE may be run
from a command prompt, or it may be run from
Windows by double clicking on the Warehouse icon.

 If you wish to execute a particular Warehouse script
from the command prompt, put the filename of the
script as a command parameter. Example:

WH MyScript.txt

Running the
Warehouse Server
on Windows

Before the Warehouse Server Program may be used,
it must be set up as a service. Provided with the
installation is a program (instsrv) that installs and
uninstalls the Warehouse service. After the
Warehouse service is installed, it must be started
using the Services control panel. After the
Warehouse service is started, connections may be
received from Warehouse client processes.

Installing the
Warehouse Service
on Windows

1. Login to your Windows system as
Administrator.

 2. Install the Warehouse service in one of two ways:

by running the WHSTART.EXE program or by
issuing the instsrv command. For convenience a
WHSTART.EXE shortcut has been placed in the
Warehouse Folder and is accessed at START |
Programs | Warehouse | Install
Warehouse Service. To issue the instsrv

Installation and Execution Windows

 Chapter Seven 403

command, launch a command prompt window and
run the program with the parameters Warehouse
and the fully qualified name of the WHSTART.EXE
program:

instsrv Warehouse "c:\Program

Files\Taurus\Warehouse\WhStart.exe"

 3. Open the Services control panel, alphabetically
locate the entry for the Warehouse service.
Highlight the Warehouse service by clicking on it
and click on the Start link. This starts the
Warehouse service which will remain running
until the system is shut down.

If you wish the Warehouse service to be started
automatically at system startup, modify the
Warehouse Service properties and change the
Startup type to Automatic. If you do not set the
service to Automatic, you will need to start the
Warehouse service manually after each system
restart.

 4. Close related open windows. Warehouse is now
ready to accept connections, but users are required
to have the "Log on as a service" user right to
connect to Warehouse as explained below.

Listening to Specific
Port Numbers

On Windows systems, the Warehouse server may be
directed to listen to a specific port by indicating the
port number in the service name when installing the
service with INSTSRV. The default Warehouse port is
1610 and is installed using something like:

INSTSRV Warehouse "C:\Program

Files\Taurus\Warehouse\WhStart.exe"

To indicate a specific port number, append _p#### to
the service name, where #### is the port number you
wish to use. For example, if you wished to use port
11610, you would install the Warehouse service as
follows:

INSTSRV Warehouse_p11610 "C:\Program

Windows Installation and Execution

404 Chapter Seven

Files\Taurus\Warehouse\WhStart.exe"

Port numbers are controlled by the Internet Assigned
Numbers Authority. See:
http://www.iana.org/assignments/port-numbers

Adding the "Log on as
a service" user right
on Windows

Before Warehouse clients may connect to a Windows
Warehouse server program, users must be given the
"Log on as a service" user right.

More information can be found at:
http://technet.microsoft.com/en-
us/library/cc739424.aspx

Windows NT 1. Run the Windows NT program User Manager
for Domains. (Start | Programs |
Administrative Tools (Common) | User
Manager)

 2. From the Policies menu, select User

Rights....

 3. Check the Show Advanced Rights box in the
lower left.

 4. Click the down arrow on the Right combo box

and use the scroll bar to find and click on Log
on as a service.

 5. While Log on as a service is displayed as

the Right, click on the Add... button.

 6. A new dialog box is displayed that is used to
grant the new user right to users and groups.
Click on the Show users button to display users
as well as groups.

 7. Select a user or group that you wish to allow

access with Warehouse, then click on the Add
button. Repeat this process until you have
added all users and groups that will access this
system via the Warehouse server.

Installation and Execution Windows

 Chapter Seven 405

 8. Click OK to return to the User Rights Policy

dialog box.

 9. Click OK again to return to the main program
window and then exit.

Windows 2000 1. Run the Windows 2000 Microsoft Management
Console program Local Security Policy.
(Start | Programs | Administrative
Tools | Local Security Policy) You may
need to install the security policy snap-in. To do
this run MMC.EXE from the Start | Run menu,
then choose Add/Remove Snap-in… from the
Console menu and install the Local Computer
Policy snap-in.

 2. Once the security policy editor is running expand

Local Policies by clicking the + and then
click on User Rights Assignment. This
should give you a list of user rights.

 3. Double-click on Log on as a service. This

should bring up a window that shows which
users have the Log on as a service right.

 4. Click on Add… to the give Log on as a

service to selected users and groups.

 5. A new dialog box is displayed showing available
users and groups.

 6. Select a user or group that you wish to allow

access with Warehouse, then click on the Add…
button. Repeat this process until you have
added all users and groups that will access this
system via the Warehouse server.

 7. Click OK to return to the Local Security

Policy Setting dialog box.

 8. Click OK again to return to the main program
window and then exit by clicking on the X in the

Windows Installation and Execution

406 Chapter Seven

upper right hand corner of the window.

Windows XP 1. Click Start | Control Panel |
Administrative Tools | Local Security
Policy

 2. From the User Rights Assignment folder,
locate the policy named Log on as a service

 3. Right click on Log on as a service and
select Properties

 4. From the Local Security Setting tab, click
on the button Add user or Group

 5. From the pop up temporary window that
appears, enter the user name and click the
button labeled Check Names. Search until the
correct user is found.

 6. Click OK, and close out of all related windows.
The user has now been given additional log on
rights.

Modifying the
authorization file on
Windows

Before Warehouse clients may connect to the
Warehouse server, the authorization file AUTHFILE
must be set up to allow remote connections. This
may done by running either the Warehouse client
program wh.exe or the Warehouse server program
whserv.exe with the parameter -a. Example:

WH –a

or

WHSERV -a

 For information on authorizing Warehouse server

access and the AUTHFILE, see the section later in
this chapter titled Authorizing Warehouse
Server Access.

Installation and Execution Windows

 Chapter Seven 407

Stopping the
Warehouse Server on
Windows

The Warehouse server is stopped using the
Services control panel. Open the Services
control panel. Alphabetically locate the Warehouse
service. If the status is Started, highlight the
Warehouse service by clicking on it and then click on
the Stop button. This stops the Warehouse service.
Press Close to exit.

Uninstalling
Warehouse on
Windows

If for any reason you wish to remove Warehouse
from your system, perform the following steps:

 1. Make certain that no users are accessing
Warehouse.

 2. Make certain the Warehouse service is stopped.

See the previous section, Stopping the
Warehouse Server on Windows.

 3. Uninstall the Warehouse service by running the

instsrv program with the parameter
Warehouse remove:

instsrv Warehouse remove

For convenience, this has been set up as a
shortcut that can be run from the Warehouse
group by clicking START | Programs |
Warehouse | Uninstall Warehouse
Service.

 4. Removal of the software can be done in one of
two says:

Access the uninstall program provided with the
software: click START | Programs |
Warehouse | Uninstall Warehouse

or

Open the Add/Remove Programs control panel.
Alphabetically locate Warehouse and highlight
the entry by clicking on it. Click on the
Add/Remove button.

Windows Installation and Execution

408 Chapter Seven

 5. When you are asked if you want to remove it,

click on Yes. The uninstall program is run and
Warehouse is removed from your system.

Installation and Execution Validation

 Chapter Seven 409

Validating
Warehouse

Before Warehouse can be run, it must be validated.
This is done using -v as a parameter. (On MPE/iX,
use INFO=). Examples:

 On MPE/iX:

 :RUN WH.WHII.TAURUS;INFO="-v"

 On Unix:

 $ warehouse –v

 On Windows:

 C: wh –v

 After running Warehouse with the -v option, you
are presented with a menu. If you have a
demonstration copy of Warehouse and a
demonstration validation code provided by Taurus
Software, enter option 1. You are then asked to
enter your validation code. After entering a valid
code Warehouse will in a full function mode until
the expiration date.

 If you wish to convert a demonstration copy of
Warehouse to a production copy enter option 2.
You will need a production validation code that is
generated by Taurus Software and is based upon
the Production Validation Code displayed by
Warehouse after entering a demonstration code.
After entering the code to Warehouse, you are
asked to enter your company name. Enter the
name of you company. Note that Warehouse
requires the company name to be at least 10
characters in length. If you company name is less
than 10 characters long, you may add additional
characters to bring it up the minimum. For
example, if you company name is ACME, you may
enter **** ACME **** as your company name.

Validation Installation and Execution

410 Chapter Seven

Authorizing
Warehouse Server
Access

Before a Warehouse server can be run, an
AUTHFILE must exist on the same system as the
server. The AUTHFILE describes which client
systems may connect to the server and under what
conditions.

The AUTHFILE is edited using the Warehouse
server program run with the -a option. See
Maintaining the AUTHFILE later in this chapter.

 Each AUTHFILE record has four fields:

 Client computer: Name or IP address of
client computer. This is
the computer attempting
to connect to the
Warehouse server.

 Client user name: User name on client

computer. This is the user
name of the user on the
client computer that is
attempting to connect to
the Warehouse server.

NOTE: On MPE/iX
systems, the client user
name must match the
USER= parameter of the
OPEN statement. If
passwords are required,
they must be indicated in
the client user name.
Examples:

MGR.DBA/*
MGR/*.DBA
MGR/*.DBA/*

 Server user name: User name on server

computer. This is the user
name specified in the
OPEN or CREATE
statement in the script
running on the client

Installation and Execution Validation

 Chapter Seven 411

computer.

 Password Req'd(Y/N): Indicates if a password is
required to login. If Y,
then a correct PASSWORD=
must be supplied in the
client OPEN or CREATE
statement. If N, then no
password is required
when coming from the
specified client computer.

 Each of the first three fields can contain an

asterisk (*) used as a wildcard character to allow
any match.

 When a Warehouse client attempts to connect to a
Warehouse server, the server searches the
AUTHFILE for a record that will allow the client to
login to the server. If no record is found, access is
denied by the server.

AUTHFILE
Examples

Example 1:

 The following AUTHFILE entry is on the server RED.
It allows a user logged in as MGR.GLDB on client
computer BLUE.TAURUS.COM to login to the user
DOUG on RED as long as the correct user password
for DOUG is supplied.

 Client Host Name: BLUE.TAURUS.COM
Client User Name: MGR/*.GLDB/*
Server User Name: DOUG
Password Req’d: Y

 The script on BLUE could contain the following

Warehouse OPEN statement:

 OPEN T REMOTE RED USER=DOUG PASSWORD=BLVD &
 ORACLE SCOTT/TIGER &
 HOME=/b/u01/oradata/ora SID=ora

 Because the "Password Req'd" field was Y, the

script needed to specify DOUG's password of BLVD to
RED. Note the use of "/*" in the client user name.

Validation Installation and Execution

412 Chapter Seven

Since, on MPE/iX, the user and password is
considered as one field, the /* is necessary in the
user name to match the user name supplied in the
remote connection. If no password was supplied,
or the incorrect password is supplied, access is
denied by the server.

 Example 2:

 The following AUTHFILE entry is on the server RED.
It allows a user logged in as MGR.GLDB on client
computer BLUE.TAURUS.COM to login to the user
DOUG on RED, but the password does not have to be
supplied.

 Client Host Name: BLUE.TAURUS.COM
Client User Name: MGR.GLDB
Server User Name: DOUG
Password Req’d: N

 The script on BLUE could contain the following

OPEN statement:

 OPEN T REMOTE RED USER=DOUG &
 ORACLE SCOTT/TIGER &
 HOME=/b/u01/oradata/ora SID=ora

 Because the "Password Req'd" field was N, the

script did not need specify DOUG's password to RED.

 Example 3:

 The following AUTHFILE entry is on the server RED.
It allows any user from the domain TAURUS.COM to
login to any user on RED providing the correct
password is supplied.

 Client Host Name: *.TAURUS.COM
Client User Name: *
Server User Name: *
Password Req’d: Y

 Example 4:

 The following AUTHFILE entry is on the server RED.

Installation and Execution Validation

 Chapter Seven 413

It allows any user from the Class C IP address
starting with 205.178.2 to login to the server RED
using the user name SALES without supplying a
password.

 Client Host Name: 205.178.2.*
Client User Name: *
Server User Name: SALES
Password Req’d: N

 Example 5:

 The following is a list of three AUTHFILE entries:

 Client Host Name: *.TAURUS.COM

Client User Name: *
Server User Name: *
Password Req’d: Y

 Client Host Name: BLUE.TAURUS.COM

Client User Name: MGR.GLDB
Server User Name: DOUG
Password Req’d: N

 Client Host Name: *

Client User Name: *
Server User Name: DEMO
Password Req’d: N

 These entries indicate that anyone coming from a

client in the TAURUS.COM domain may connect to
the server to any user if the correct password is
supplied. The second entry allows any user logged
into the client computer BLUE.TAURUS.COM as
MGR.GLDB to connect to the server as user DOUG
without supplying a password. The final entry
allows anyone coming from any system to connect
as the user DEMO without a password.

 Given the above AUTHFILE entries, these OPEN
statements on the client would be allowed:

 Logged in as MGR.GLDB on client

Validation Installation and Execution

414 Chapter Seven

GREEN.TAURUS.COM:

 OPEN T REMOTE RED USER=ANY
PASSWORD=THEPASS &
 ORACLE SCOTT/TIGER &
 HOME=/b/u01/oradata/ora SID=ora

 Allowed by first AUTHFILE record.

 Logged in as AUSER.SYS on client

YELLOW.TAURUS.COM:

 OPEN T REMOTE RED USER=SWIFT PASS=EAGLE &
 ORACLE SCOTT/TIGER &
 HOME=/b/u01/oradata/ora SID=ora

 Allowed by first AUTHFILE record.

 Logged in as MGR.GLDB on client

BLUE.TAURUS.COM:

 OPEN T REMOTE RED USER=DOUG &
 ORACLE SCOTT/TIGER &
 HOME=/b/u01/oradata/ora SID=ora

 Allowed by second record. No password needed.

 Logged in as ANYUSER on client

ROOT.HACKER.COM:

 OPEN T REMOTE RED USER=DEMO &
 ORACLE SCOTT/TIGER &
 HOME=/b/u01/oradata/ora SID=ora

 Allowed by third record. No password needed.

 Given the above AUTHFILE entries, these OPEN

statements on the client would not be allowed:

 Logged in as MGR.GLDB on client
GREEN.GEMINI.COM:

 OPEN T REMOTE RED USER=ANY PASSWORD=APASS &
 ORACLE SCOTT/TIGER &
 HOME=/b/u01/oradata/ora SID=ora

 No match in AUTHFILE. Must come from

*.TAURUS.COM.

Installation and Execution Validation

 Chapter Seven 415

 Logged in as MGR.GLDB on client

ORANGE.TAURUS.COM:

 OPEN T REMOTE RED USER=DOUG &
 ORACLE SCOTT/TIGER &
 HOME=/b/u01/oradata/ora SID=ora

 No match in AUTHFILE. Must come from

BLUE.TAURUS.COM.

 Logged in as ANYUSER on client
ROOT.HACKER.COM:

 OPEN T REMOTE RED USER=DOUG &
 ORACLE SCOTT/TIGER &
 HOME=/b/u01/oradata/ora SID=ora

 No match in AUTHFILE. Must login as user DEMO.

Maintaining the
AUTHFILE

The Warehouse AUTHFILE is maintained by running
the Warehouse server program with the "-a" option.
The "-a" option causes Warehouse to be run in a
special mode to edit the AUTHFILE. A menu is
presented with the following options:

 0 Writes the current authorization records to the
AUTHFILE along with any changes made and
exits.

 1. Writes the current authorization records to the

AUTHFILE along with any changes made and
exits.

 2. Lists the current authorization records after

first reading them from the AUTHFILE.

 3. Adds a new authorization record. After
selecting option 2, the user is prompted for each
of the four authorization fields.

 4. Deletes an authorization record. After selecting

option 3, the user is prompted for the record
number to be deleted. Record numbers can be
displayed using option 1, list.

Validation Installation and Execution

416 Chapter Seven

 99 Exits without writing changes back to the
AUTHFILE.

Checking Connections Installation and Execution

- Chapter Seven 417

Checking
Warehouse Server
Connections

Once a Warehouse server program is set up and
running, you may wish to verify the connection
from a client. This can be done by running the
Warehouse client program with the -c (or
-connect) option.

To check a connection to a Warehouse server,
perform the following steps:

Step 1
Verifying Connection

Run the Warehouse client program with the -c
option

warehouse –c

or

wh -c

Step 2 Enter the name or IP address of the system (ENTER

exits program):

 Enter name or IP address of server ->mysys

Step 3 Do not enter a user name when prompted; press
ENTER instead. If a user name is entered, access
validation is done. This step should be done later.

 Enter user name on server (Optional) -><enter>

Step 4 At this point Warehouse will verify your network
connection. If you cannot connect, either the
Warehouse server is not running on the remote
system or you have a network problem. The error
message should help diagnose the problem.

Step 5
Verifying Login

If the connection test passed, re-enter the name of
the system when prompted. If the connection test
failed press ENTER to exit.

 Enter name or IP address of server ->mysys

Step 6 Enter a user that has been entered into the
AUTHFILE on the remote system:

 Enter user name on server (Optional) ->whuser

Installation and Execution Checking Connections

418 Chapter Seven -

Step 7 Enter the password of the user:

 Enter password ->userpw

Step 8 Do not enter a database type when prompted; press
ENTER instead. If a database type is entered,
database access validation is done. This step should
be done later.

 Enter remote database type (optional) -><enter>

Step 9 At this point Warehouse verifies your network
connection and user access. If this step is successful
you should be able to open remote connections to
access remote databases and files with a Warehouse
script. If this step fails, but step 4 succeeded, you
may have entered something incorrectly. Check your
user name and password and verify that the
AUTHFILE allows access to your user from your client
system. If the server is running on Windows NT,
make certain the user name you entered has the
"Log on as a service" user right.

If the connection and login to the remote system was
successful, a partial OPEN statement is displayed
that shows an encrypted password. The encrypted
password can be used to open remote connections to
this system in Warehouse scripts. The password can
be "cut" and "pasted" into scripts opening databases
on this system. Example:

 OPEN dbtag REMOTE mysys USER=whuser &
 EPASS1=f7d6ac4e5f72d2c60734ca5364272abddce &
 dbtype dbparms...

Step 10
Verifying Database
Access

Once the remote system connection and login has
been verified, the database connection may be
verified. To verify the database connection, reenter
the information entered in steps 4-7, then enter the
type of the remote database. The type is case
insensitive and must be either ALLBASE, ARCHIVE,
CSV, FIXED, IMAGE, ODBC, ORACLE, or TEXT.
Example:

 Enter name or IP address of server ->mysys
 Enter user name on server (Optional) ->whuser

Checking Connections Installation and Execution

- Chapter Seven 419

 Enter password ->userpw
 Enter remote database type (optional) ->oracle

Step 11 When prompted, enter the parameters specific to the
type of database. Example:

 Enter Oracle user name -> scott
 Enter Oracle user password -> tiger
 Enter Oracle SID -> ora
 Enter Oracle HOME -> /oradata/ora

Step 12 At this point Warehouse verifies your remote
database connection. If this step fails, you may have
entered something incorrectly or you may not have
access to the database from the login user.

If the remote database connection was successful, an
OPEN statement is displayed that shows encrypted
passwords and can be used to open remote
connections in Warehouse scripts. This OPEN
statement can be "cut" and "pasted" into scripts
opening this database. Example:

 OPEN dbtag REMOTE mysys USER=whuser &
 EPASS1=f7d6ac4e5f72d2c60734ca5364272abddce &
 oracle scott SID=ora HOME=/oradata/ora &

EPASS1=7a03d4d4a62f02a95bc30a0040fe7149f792f81

Installation and Execution Environment Variables

420 Chapter Seven -

Environment
Variables

Warehouse installations require environment
variables specific to each operating system.

Common to all
Installations

These environment variables are common to all
installations. The DB2 and ODBC libraries are
dynamically loaded on UNIX platforms (except
RS6000) .

COMPUTERNAME – Warehouse will use the value

stored here for the Host when gethostname()
fails.

ORACLE_HOME – Same as Oracle HOME.
ORACLE_SID – Same as Oracle SID.
WHCHARMAPS – the name of the CHARMAPS

(extended character maps) file
WHCTLDBSFILE - the name of Warehouse control

database file.
WHHOME – the location of the Warehouse home

directory
WHKEEPALIVE – the value for the network

SO_KEEPALIVE used to keep a network
connection active

Default: 1

WHLIBPATH – the dynamic library path
WHLOG – the name of the warehouse log file

Default: WHLOG

WHNETBUFSIZE – the size in Bytes of the network

buffer

Default: 4000

WHNETTIMEOUT – enables network timeout in

seconds
WHODBCHOME – the ODBC library home
WHODBCLIB – the name of the ODBC library file

Default: ODBC32.DLL

WHODBCLIBPATH – the directory where the ODBC

Environment Variables Installation and Execution

- Chapter Seven 421

library files are located
WHORA7ONLY – a non-zero value indicates Oracle 7

only
WHORACLE8LIB – the OCI library name for Oracle 8
WHORACLELIB – the OCI library name for Oracle 7
WHORACLELIBPATH – the OCI library path for

Oracle
WHPID – a zero value here disables PID printing
WHPROG – the Warehouse client program name
WHRBLOCKSIZE – the block size for rollback files
WHSERVERKEY – the Server Name for job

scheduling

Default: gethostname()

Eloquence Eloquence (IMAGE) libraries are dynamically loaded

on all platforms except MPE/iX where they are
statically loaded. Variables may be set prior to
running Warehouse to facilitate the dynamic loading
of IMAGE (Eloquence) libraries

WHIMAGEHOME - points to the Eloquence installation

directory.

Default: /opt/eloquence6/

WHIMAGEPATH - points to the library directory within

the installation directory.

Default: lib/pa11_32

WHIMAGELIB - points to the library file within the

directory.

Default: libimage3k.sl

WHSUBSYS – Override DBINFO mode 501 –

subsystem access to the database

Default: DBINFO(501)

HP-UX These environment variables are common to HP-UX

Installation and Execution Environment Variables

422 Chapter Seven -

installations.

UNIX95 – enables the internal ps -p
WHDYNFILESYS – a value of 1 means Static file

system, 2 means dynamic file system
WHFILESYSLIB – the file system library name

Default: libc.sl or libc.so

WHSECLIB – the security library path
WHTRUST – a value of 1 means this is a

trusted system

MPE These environment variables are common to MPE
installations.

HPACCOUNT – the login account
HPGROUP – the login group
HPUSER – the login user
WHSUBSYS – Override DBINFO mode 501 –

subsystem access to the database

Default: DBINFO(501)

Appendix A

 Appendix A 423

Appendix A

Transactions and Error Handling

 Appendix A

424 Appendix A

Transactions By default, Warehouse treats every record read and
processed from an outer READ statement to be a
single transaction. The number of records read
from an outer READ statement that constitute a
transaction may be altered by changing the
COMMITRATE. In addition, the COMMIT statement
may be used within the script to terminate one
transaction and begin the next one.

Transaction Begin Warehouse transactions are begun at each outer
READ statement. The effect of a transaction begin
depends upon the type of database accessed. For
file types ARCHIVE, CSV, FIXED, REPORT, and TEXT
a transaction begin has no effect. For file types
ALLBASE, DB2, ODBC, and ORACLE, a transaction
begin is handled by the database. For the IMAGE
file type, database locks are placed on the dataset
(or database if locking is set to BASE) and if locking
is set to ROLLBACK, DBXBEGIN is called. The effect
of a transaction begin on a REMOTE database is
dependent upon the type of underlying database.

Transaction End After processing each record from an outer READ
statement (or more records if the COMMITRATE is set
to more than 1), Warehouse commits the
transaction. Warehouse also commits the
transaction whenever a COMMIT statement is
reached. To perform the commit Warehouse does a
commit to each database accessed during the
transaction. Databases that were not accessed
during the transaction are not committed.

The effect of a commit depends upon the type of
database accessed. For file types ARCHIVE, CSV,
FIXED, REPORT, and TEXT a commit has no effect.
For file types ALLBASE, DB2, ODBC, and ORACLE, a
commit does an SQL COMMIT WORK operation. For
the IMAGE file type, database locks are released and
if locking is set to ROLLBACK, DBXEND is called.
The effect of a commit on a REMOTE database is
dependent upon the type of underlying database.

Commit Rate The frequency of commits may be controlled by

Appendix A

 Appendix A 425

using the SET statement to change the commit rate.
The default commit rate of 1 causes a commit to be
done after every record from an outer READ
statement is processed. Setting the commit rate to
n causes Warehouse to commit after every n records
are processed from each outer READ statement.
Larger values of n usually increase performance,
but there is point of diminishing returns, and very
large values of n can actually degrade system
performance. In general, the commit rate should
not be set above 1000.

Transaction
Rollback

In the event of a script error that is not caught by a
TRY statement, Warehouse does a transaction
rollback and then exits with a result code of 1. The
only time an automatic rollback is done is just
before Warehouse terminates due to a script error.
The effect of a rollback depends upon the type of
database accessed.

The effect of a rollback on a REMOTE database is
dependent upon the type of underlying database.

ARCHIVE, CSV,
FIXED, REPORT,
TEXT

Rollback has no effect. (An exception is that a
rollback for a FIXED MPE/iX message file opened
with NDR causes the most recent record read from
the message file to remain in the message file after
Warehouse terminates.)

ALLBASE, DB2,
ODBC, ORACLE

Rollback does an SQL ROLLBACK WORK operation.

IMAGE Database locks are released and if locking is set to
ROLLBACK, DBXUNDO is called.

Script Example The following is a sample Warehouse script that
copies two tables from an IMAGE database to a
remote Oracle database:

1. OPEN CUST IMAGE CUSTDB.DATA &
 PASS=PW MODE=5
2. OPEN DEST REMOTE USYSTEM &
 USER=uuser PASS=upass &

 Appendix A

426 Appendix A

 ORACLE SCOTT/TIGER &
 HOME=/u01/oradata SID=orcl
3. READ CM = CUST.CUST-MASTER
4. COPY CM TO DEST.CUSTOMERS
5. READ CT = CUST.CUST-TRANS &
 FOR CUST-NO = CM.CUST-NO
6. COPY CT TO DEST.CUST_TRANS
7. ENDREAD
8. ENDREAD

 Line 1: Opens the IMAGE database called
CUSTDB.DATA.

 Line 2: Opens a remote Oracle database on the

system USYSTEM.

 Line 3: Reads all records from the CUST-MASTER
dataset. Since this an outer READ
statement a transaction is begun for each
record read by this statement.

 Line 4: Copies the CUST-MASTER record to the

remote Oracle table CUSTOMERS.

 Line 5: Reads corresponding CUST-TRANS
records. No transaction is begun by this
statement.

 Line 6: Copies the CUST-TRANS record to the

remote Oracle table CUST_TRANS.

 Line 7: Terminates the CUST-TRANS read loop
begun in line 5.

 Line 8: Terminates the CUST-MASTER read loop

begun in line 3. Since this ENDREAD
corresponds to an outer READ statement,
this statement causes the transaction to
terminate which unlocks the IMAGE
database and causes the remote Oracle
database to do a commit.

Appendix A

 Appendix A 427

Error Handling In general, there are three types of error recognized
by Warehouse with each one giving different
behavior. The three types of errors are:

 Script compilation errors
 Runtime expression errors
 Serious runtime errors

Script Compilation
Errors

An error encountered during script compilation
displays an error message and script compilation
continues, but the script is not executed. A GO
statement after a script compilation error causes
Warehouse to exit without running the script.

Runtime
Expression Errors

An error during script execution caused by bad
values within an expression causes an error
message to be displayed and script execution to
continue. (An exception is an array bounds error
which is treated as a serious error.) Expression
errors are often data conversion errors and can
usually be prevented by modifying your expression
or data types used by the expression. When an
error occurs during expression evaluation, the
expression result is undefined.

If an expression error occurs within a TRY
statement, control transfers directly to the RECOVER
block without displaying an error message, just like
a serious error.

Serious Runtime
Errors

A serious runtime error can be caused in many
ways, but is usually an error returned to
Warehouse by the database. When a serious error
is encountered outside a TRY block Warehouse
performs an automatic transaction rollback,
displays an error message and exits with a code of 1
(one). (On MPE/iX the job control word CJCW is set
to 1.)

Serious errors may also be handled by specifying
ERRORS TO file on a COPY statement. The
ERRORS TO file causes any errors during the
COPY statement to be ignored and the record that
caused the error to be written to file.

Appendix B Preprocessing

 Appendix B 429

Appendix B

Preprocessing

Preprocessing Appendix B

430 Appendix B

Preprocessing When processing a script Warehouse preprocesses
each line of the script before interpretation. All
script lines are scanned for
${preprocessor-var} and if found, the value of
preprocessor-var is substituted. The
preprocessing also handles all statements that
begin with #. Statements beginning with # are
statements used to manipulate preprocessing
variables and determine how lines of the script are
interpreted. All preprocessing is done as each line
is read from the script file, that is before the GO
statement.

Preprocessing
Statements

Preprocessing statements are included in the script
like any other Warehouse statement.
Preprocessing statements may be continued onto
the next line with an ampersand (&), like other
Warehouse statements. The preprocessing
statements are:

 #EXIT Exits Warehouse.
#IF Conditional statement

processing
#PRINT Display of preprocessor

variables and expressions
#SETVAR Sets preprocessor

variables

#EXIT The #EXIT statement is used to stop processing and
exit Warehouse. The syntax is:

 #EXIT [exit-value]

Exits Warehouse returning exit-value to the
operating system. The exit-value must be
numeric and if omitted, zero is used. On MPE/iX,
CJCW is set to the value of exit-value and if
exit-value is unequal to zero, JCW is set to
FATAL. #EXIT is the same as EXIT except that
#EXIT allows an exit value to be passed back to the
operating system.

#IF The #IF statement is used to perform conditional

Appendix B Preprocessing

 Appendix B 431

statement processing. The syntax is:

 #IF condition [THEN]
 statements
 #[ELSE [IF condition [THEN]]]
 statements
 #ENDIF

If condition is TRUE then all script statements
after #IF are processed. If condition is FALSE
then all script statements after #IF are ignored
until a #ELSE or a #ENDIF statement.

#PRINT The #PRINT statement is used to display
preprocessing variables and expressions. The
syntax is:

 #PRINT [exp] [, exp] [, …]

exp is a preprocessing expression that is displayed
immediately. Expressions are displayed with one
space between each expression with a newline at
the end. If the #PRINT statement ends in a comma,
the newline is suppressed. A semicolon may also be
used to separate expressions. If a semicolon is used
as a separator, the space between expressions is
suppressed.

#SETVAR The #SETVAR statement is used to set the value of
preprocessing variables. The syntax is:

 #SETVAR varname = expression

The preprocessing variable varname is set to the
value of expression. varname must not be a read-
only variable such as WHVERSION.

Preprocessing
Expressions

Preprocessing expressions are a subset of
Warehouse expressions, but are much less sensitive
to data types. All operands are considered strings
and are converted to integers only to perform
arithmetic operations.

Identifiers Preprocessor variables are case insensitive, must

Preprocessing Appendix B

432 Appendix B

begin with an alphabetic character or _ and may
contain any of the characters allowed in Warehouse
script variables. The characters allowed are:
A…Z, 0…9, _, +, -, *, /, ?, #, %, &, @, '.

Constants Preprocessor constants may be either a string
enclosed in quotes, or an integer. Preprocessor
string constants work the same as Warehouse
script constants, which are described in Chapter
Five, Warehouse Expressions. Numeric
preprocessor constants must be an integer in the
form of: [- | +] digit [digit…]

System Variables There are several predefined preprocessor variables
that can be accessed in # statements. They are:

FALSE False value, read-only.
($FALSE is used in a script,
not by the preprocessor.)

TRUE True value, read-only. ($TRUE

is used in a script, not by the
preprocessor.)

WHERRNO Error number of most recent

Warehouse error, or zero if no
error has occurred. WHERRNO
is read-write and may be set
to a numeric value with
#SETVAR. ($ERR.WHERRNO is
used to access the most recent
error in a script.)

WHVERSION Version number of Warehouse

client, read-only. The last
character contains the
operating system identifier.
See Chapter One,
Introduction for information
on Warehouse version
numbers.

Operating System
Environment

Operating system environment variables may be
accessed by the preprocessor by simply using the

Appendix B Preprocessing

 Appendix B 433

Variables variable name as though it had been set by
#SETVAR. If an attempt is made to access a
variable not set by #SETVAR, the preprocessor
automatically checks for an operating system
variable of the same name. This allows operating
system environment variables to be set outside of
Warehouse and easily passed to the preprocessor.
(Note that #SETVAR does not set operating system
variables.)

Operators Preprocessor operators are as follows in order of
precedence from highest to lowest:

+, - Unary positive and negative
NOT Logical not
*, /, MOD Multiplication, division, and

modulus
+, - Addition and subtraction
||, + String concatenation
=,<,>,<=,>=,<> Relational operators
AND Logical AND
OR Logical OR

NOT, AND, and OR operate only on TRUE/FALSE
values.

Unary +, -, *, /, and MOD operate only on integer
values.

Relational operators (=, <, >, <=, >=, <>) and +
operate on integer values if both operands are
numeric, otherwise a string operation is done.

|| concatenates two strings. e.g. "12" || "34"
is "1234", but "12" + "34" is 46, and
"AB" + "CD" is "ABCD".

Functions Available preprocessor functions are as follows:

ACCEPT(prompt) Reads a string from stdin using

prompt as a prompt string.

DEFINED(var-name) Returns TRUE if var-name

is either a predefined

Preprocessing Appendix B

434 Appendix B

preprocessor variable, a
preprocessor variable set with
#SETVAR, or an operating
system variable set outside of
Warehouse. If var-name is
none of these DEFINED returns
FALSE.

DWNS(string) Downshifts all uppercase

characters in string.

LEN(string) Returns the length in

characters of string.

NOW(format) Returns the current date and

time in the format specified by
format. Date formats are
described in Chapter Five,
Warehouse Expressions under
the DATE2STR function.

STR(string,index,length) Extracts substring

of length characters from
string starting at index with
1 being the first character.

SYSTEM(command) Performs an operating

system command command and
returns the operating system
error number. A return value of
zero indicates success.

UPS(string) Upshifts all lowercase

characters in string.

Preprocessor
Variable
Substitution

Every script line is scanned for
${preprocessor-variable} and if any are
found, the value of preprocessor-variable is
substituted into the script line. This allows items
such as passwords and file names to be calculated
with the preprocessor or outside of Warehouse and
substituted into the Warehouse script.

Appendix B Preprocessing

 Appendix B 435

The preprocessor-variable may also be the
name of an operating system environment variable.

If preprocessor-variable is has not been
defined with #SETVAR and is not an operating
system variable, a null string is substituted.

Preprocessing
Examples

The following are some examples using the
Warehouse preprocessor:

Example 1:
Database
Password

#PRINT "IMAGE and ORACLE passwords are"
#PRINT "required to run this script."
#PRINT
#SETVAR ORAPASS = ACCEPT &
 ("Please enter Oracle password->")
#SETVAR IMGPASS = ACCEPT &
 ("Please enter Image password ->")

OPEN CUST IMAGE CUSTDB.DATA &
 PASS=${IMGPASS} MODE=5
#IF WHERRNO <> 0
PRINT Error opening IMAGE database.”
EXIT 1
#ENDIF

OPEN DEST ORACLE SCOTT/${ORAPASS} &
 HOME=/u01/oradata SID=orcl
#IF WHERRNO <> 0
PRINT Error opening Oracle database.”
EXIT 2
#ENDIF

READ CM = CUST.CUST-MASTER
 COPY CM TO DEST.CUSTOMERS
 READ CT = CUST.CUST-TRANS &
 FOR CUST-NO = CM.CUST-NO
 COPY CT TO DEST.CUST_TRANS
 ENDREAD
ENDREAD

 The above script prompts the user for the Image
and Oracle database passwords and uses the
passwords entered to open the databases. Success
of the OPEN statements is checked using WHERRNO
and if either database open fails, processing is
stopped using #EXIT.

Preprocessing Appendix B

436 Appendix B

Example 2:
Creating a File by
Date

#SETVAR FNAME = "F" || NOW("YYMMDD")
CREATE LOGFIL FIXED ${FNAME}

OPEN ODB ORACLE SCOTT/TIGER &
 HOME=/u01/oradata SID=orcl

READ CL = ODB.CUST_LOG
 COPY CL TO LOGFIL
ENDREAD

 This script calculates a file name in the form of
Fyymmdd to which customer log records are copied.
The file is then opened with the CREATE statement
and customer log records are copied from the
Oracle database to the file.

Example 3:
Opening a Remote
or Local Database

#IF DEFINED(COMPUTERNAME)
IF UPS(COMPUTERNAME) = "SYSTEM04"
SETVAR LOCAL = TRUE
ELSE
SETVAR LOCAL = FALSE
ENDIF
#ELSE
SETVAR LOCAL = FALSE
#ENDIF

#IF LOCAL
OPEN ODB ORACLE SCOTT/TIGER &
 HOME=/u01/oradata SID=orcl
#ELSE
OPEN ODB REMOTE SYSTEM04 &
 USER=WHUSER PASS=WHUPASS &
 ORACLE SCOTT/TIGER &
 HOME=/u01/oradata SID=orcl
#ENDIF

READ CM = CUST.CUST-MASTER
 COPY CM TO DEST.CUSTOMERS
 READ CT = CUST.CUST-TRANS &
 FOR CUST-NO = CM.CUST-NO
 COPY CT TO DEST.CUST_TRANS
 ENDREAD
ENDREAD

 This script determines if it is being run on
SYSTEM04 by looking at the operating system
environment variable COMPUTERNAME, after first
checking that it is defined. If it being run on

Appendix B Preprocessing

 Appendix B 437

SYSTEM04 a local Oracle database is opened,
otherwise a remote Oracle database is opened on
SYSTEM04.

Appendix C Character Maps

 Appendix C 439

Appendix C

Character Maps

Character Maps Appendix C

440 Appendix C

Character Map
Files

To support the CMAP function, Warehouse relies on
underlying "charmap" files that define each
character set. The charmap files are in an an
industry standard format and are commonly
available on Unix platforms and on the internet
(For example, charmaps are available at:
http://std.dkuug.dk/i18n/charmaps.646/). (On a
Unix system, see "man charmap" for details.) The
charmap files used by Warehouse must be listed in
the CHARMAPS file. The CHARMAPS file is created by
the user in a text editor and lists the names of the
charmap files Warehouse is to access, one file name
per line. The CHARMAPS file must reside in the
same directory as the Warehouse program.

For example, if your Warehouse program is called

 /usr/local/taurus/whii/warehouse

then your CHARMAPS file must be called:

 /usr/local/taurus/whii/CHARMAPS

Sample Warehouse
CHARMAPS File

Your CHARMAPS file might contain the following
two lines pointing to your two charmap files:

 # Warehouse CHARMAPS file
 /usr/lib/localedef/src/iso_8859_1/charmap.src
 /usr/local/charmaps/DIN_66003

Charmap File
Header

Each charmap file has a header and a body. The
header has the following
directives:

 <code_set_name> CHARSET-NAME

CHARSET-NAME is the name of the character
defined. This is the name used by the CMAP
function. It may be enclosed in quotation
marks. This directive is required.

 <comment_char> COMMENT-CHARACTER

COMMENT-CHARACTER is the character used to

Appendix C Character Maps

 Appendix C 441

indicate a comment line with the character map
file. This directive is optional and the default
comment character is a pound sign (#).

 <escape_char> ESCAPE-CHARACTER

ESCAPE-CHARACTER is the character used to
indicate an escape where the following
character is interpreted as part of a token
instead of as a special character. The escape
character is also used to indicate a numeric
character value. This directive is optional and
the default escape character is a backslash (\).

 <mb_cur_max> MAXIMUM-BYTES-PER-CHARACER

MAXIMUM-BYTES-PER-CHARACER indicates the
maximum number of bytes per character. This
value must be 1, 2, or 3. This directive is
required.

 <mb_cur_min> MINIMUM-BYTES-PER-CHARACER

MINIMUM-BYTES-PER-CHARACER indicates the
minimum number of bytes per character. This
value must be 1, 2, or 3 and not greater than the
maximum bytes per character. This directive is
required.

CHARMAP File Body The body of the character map immediately follows
the header and is as follows:

 CHARMAP
 <id1> value1 optional-comment-1
 <id2> value2 optional-comment-2
 <id3> value3 optional-comment-3
 ...
 CHARMAP END

 The beginning of the body must begin with
CHARMAP on a line by itself and must end with
CHARMAP END on a line by itself. (END CHARMAP is
also recognized.) In between are the definitions for
each character in the character map.

Character Maps Appendix C

442 Appendix C

idN is the id for each character. The id must be
enclosed in angle brackets (<>). When translating,
the id of each source character is matched with the
id of target character to produce the target value.
A range of ids may be specified using the syntax:
<idNN>...<idNN> valueN. For example:
..<ctl0>...<ctl31> \x00
 defines 32 sequential ids: <ctl0>, <ctl1>, ...,
up to <ctl31>.

valueN is the value for each character. The value
may be indicated in decimal using \dnn, octal
using \nnn, or hexadecimal using \xnn. For
example, an uppercase A could be indicated using
"\d65", "\101", or "\x41". Two byte values are
specified in decimal using \dnn\dnn, in octal using
\nnn\nnn, or hexadecimal using \xnn\xnn. A
given value may be specified by more than one id.

optional-comment-N is an optional description of
the character.

Sample CHARMAP File Here is a complete sample charmap file:

 #
POSIX Charmap source file

<code_set_name> posix
<mb_cur_max> 1
<mb_cur_min> 1

CHARMAP

<NUL> \x00
<SOH> \x01
<STX> \x02
<ETX> \x03
<EOT> \x04
<ENQ> \x05
<ACK> \x06
<alert> \x07
<backspace> \x08
<tab> \x09
<newline> \x0a
<vertical-tab> \x0b
<form-feed> \x0c

Appendix C Character Maps

 Appendix C 443

<carriage-return> \x0d
<SO> \x0e
<SI> \x0f
<DLE> \x10
<DC1> \x11
<DC2> \x12
<DC3> \x13
<DC4> \x14
<NAK> \x15
<SYN> \x16
<ETB> \x17
<CAN> \x18
 \x19
<SUB> \x1a
<ESC> \x1b
<IS4> \x1c
<IS3> \x1d
<IS2> \x1e
<IS1> \x1f
<SP> \x20
<space> \x20
<exclamation-mark> \x21
<quotation-mark> \x22
<number-sign> \x23
<dollar-sign> \x24
<percent-sign> \x25
<ampersand> \x26
<apostrophe> \x27
<left-parenthesis> \x28
<right-parenthesis> \x29
<asterisk> \x2a
<plus-sign> \x2b
<comma> \x2c
<hyphen> \x2d
<hyphen-minus> \x2d
<period> \x2e
<full-stop> \x2e
<slash> \x2f
<solidus> \x2f
<zero> \x30
<one> \x31
<two> \x32
<three> \x33
<four> \x34
<five> \x35
<six> \x36
<seven> \x37
<eight> \x38
<nine> \x39
<colon> \x3a

Character Maps Appendix C

444 Appendix C

<semicolon> \x3b
<less-than-sign> \x3c
<equals-sign> \x3d
<greater-than-sign> \x3e
<question-mark> \x3f
<commercial-at> \x40
<A> \x41
 \x42
<C> \x43
<D> \x44
<E> \x45
<F> \x46
<G> \x47
<H> \x48
<I> \x49
<J> \x4a
<K> \x4b
<L> \x4c
<M> \x4d
<N> \x4e
<O> \x4f
<P> \x50
<Q> \x51
<R> \x52
<S> \x53
<T> \x54
<U> \x55
<V> \x56
<W> \x57
<X> \x58
<Y> \x59
<Z> \x5a
<left-square-bracket> \x5b
<backslash> \x5c
<reverse-solidus> \x5c
<right-square-bracket> \x5d
<circumflex> \x5e
<circumflex-accent> \x5e
<underscore> \x5f
<underline> \x5f
<low-line> \x5f
<grave-accent> \x60
<a> \x61
 \x62
<c> \x63
<d> \x64
<e> \x65
<f> \x66
<g> \x67
<h> \x68

Appendix C Character Maps

 Appendix C 445

<i> \x69
<j> \x6a
<k> \x6b
<l> \x6c
<m> \x6d
<n> \x6e
<o> \x6f
<p> \x70
<q> \x71
<r> \x72
<s> \x73
<t> \x74
<u> \x75
<v> \x76
<w> \x77
<x> \x78
<y> \x79
<z> \x7a
<left-brace> \x7b
<left-curly-bracket> \x7b
<vertical-line> \x7c
<right-brace> \x7d
<right-curly-bracket> \x7d
<tilde> \x7e
 \x7f

<HIBIT128>...<HIBIT255> \x80

END CHARMAP

 Index

446 Index

-, 225, 433
! statement, 105, 265
Statements, 430
$CENTER, 55
$DATASETS, 155
$ERR, 219
$ERR System Variable, 220
$ERR.ESCMSG, 42
$FALSE, 219
$FALSE., 307, 361
$HOUR, 219
$MYPID, 219
$NEW, 55
$NOW, 70, 219
$NOW0, 219
$NULL, 219
$PAGE, 67
$PAGENO, 55
$RECNUM, 219
$TAB, 55, 67
$TODAY, 219
$TRUE, 219, 307, 361
$UNKNOWN, 219, 234
(BACKWARDS), 152
(RECNUM), 152
*, 224, 225, 433
* statement, 106
.ini file, 390
/, 225, 433
//, 15
{ }, 14
|| (string concatenation), 225, 433
+, 225, 433
<, 225, 433
<=, 225, 433
<>, 225, 433
=, 225, 433
==, 225, 234
>, 225, 433
>=, 225, 433
ABORTJOB, 395
ABS, 236
ACCEPT, 236, 433
Addition, 225
ALLBASE, 20, 63, 80, 109, 190
ALLBASE BINARY data type, 275
ALLBASE CHAR data type, 276
Allbase data types, 275
ALLBASE DECIMAL data type, 277
ALLBASE DOUBLE PRECISION data type,

279
ALLBASE FLOAT data type, 281

ALLBASE INTEGER data type, 282
ALLBASE REAL data type, 282
ALLBASE SMALLINT data type, 284
ALLBASE VARBINARY data type, 285
ALLBASE VARCHAR data type, 286
ALLOW NULLS, 275, 304, 326, 342
AND, 225, 433
ARCHIVE, 20, 30, 63, 80, 113, 188, 190
archive file, 20, 30, 63, 80
array, 93
ARRAY, 359
Array comparison, 227
ARRAY data type, 359
Array identifiers, 216
array index, 226
ARRAYIFY, 85, 86, 90
ASC, 71, 72
ASCII, 237
-authfile, 382
AUTHFILE, 183, 186, 189, 381, 410
AUTOCOMMIT, 169
AUTOPAD, 82, 230, 256
backwards read, 153
BAND, 225
BINARY, 361
BINARY data type, 361
Bit Not, 224
BLOB, 380, 389
BOOLEAN, 236, 247, 361
BOOLEAN data type, 361
BOR, 225
BSL, 225
BSR, 225
Built-In Functions, 236
BULK, 181
BXOR, 225
-c, 375
CALL, 16, 47, 48, 242
capture file, 143
carriage control, 197
centering output, 55
CHAR, 362
CHAR data type, 362
charmap file, 237
CHARMAPS file, 440
CHARSET, 32, 33, 36, 85, 86, 91, 229, 440
CHONOS, 362
CHONOS data type, 362
CHR, 237, 256
CIU, 157
client, 375

Index

 Index 447

CLOB, 380, 389
CLOSE, 18
CMAP, 237
CMAP function, 440
COBOL PICTURE, 67
comma separated value files, 119
comment, 106
comments, 15
COMMIT, 20, 80, 83, 424
COMMITRATE, 82, 83, 424
-connect, 375
Constants, 218
CONVERT, 227, 230, 238, 243
COPY, 23, 44, 109, 113, 119, 131, 137, 147,

163, 176, 183, 199
CREATE, 30, 109, 114, 119, 131, 137, 148,

165, 178, 186, 196, 199
critical item update, 157
CSV, 20, 23, 30, 63, 80, 119, 188, 190
Current date, 219
Customer Support, 6
Data Encryption Standard, 133, 151, 166,

178, 187, 190
data types, 274
database tag, 18, 30, 60, 63, 85, 94, 110, 113,

114, 115, 132, 150, 166, 178, 215
DataBridger Studio, 8, 133, 151, 166, 178,

187, 190
datagram, 270, 271
datasets, 155
DATE, 363
Date Addition, 232
date calculations, 241
Date Comparison, 233
DATE data type, 363
Date Operators, 232
Date Subtraction, 232
DATE2STR, 239, 261
DATETIME, 364
DATETIME data type, 364
DAYNUM, 241, 272
DB2, 63, 131
DB2 data types, 342
DB2DIR, 133
DB2INSTANCE, 133
DBUTIL.PUB.SYS, 157
DBXBEGIN, 158, 424
DBXEND, 20, 80, 158, 424
DBXUNDO, 158, 425
DEC, 277, 309, 345
default Warehouse port, 403
DEFER, 85, 86, 157
DEFINE, 32, 44, 49

DEFINED, 433
DELETE, 38, 109, 115, 124, 132, 140, 148,

165, 178, 188, 196, 202
demonstration validation, 409
DESC, 71, 72
DIRECT, 39, 242
DIVF, 225
DIVI, 225
division, 226
Division, 225
double byte character strings, 251, 256
DWNS, 242, 272, 433
EBCDIC, 238
ELSE, 58
email address, 6
encrypted password, 133, 151, 166, 178, 187,

190, 418, 419
END, 41
ENDFUNCTION, 41
ENDIF, 41, 58
ENDREAD, 11, 41, 71
ENDTRY, 41
ENDWHILE, 41, 102
environment variable, 245
environment variables, 432
Equal, 225
error handling, 99
ERRORS TO, 25, 184
ESCAPE, 42, 99, 243
Examples, 234
EXIT, 43, 430
expressions, 214
EZ-Install/3000, 391
FALSE, 432
FAQ, 6
FAX, 6
FIELD, 243
file tag, 30, 54, 66, 120, 124, 137, 140, 196,

199, 202
FILLL, 244
FILLR, 245
FIXED, 20, 23, 30, 63, 80, 137, 188, 190
fixed length record, 137
FLOAT, 364
FLOAT data type, 364
floating point divide, 226
FOR, 11, 71, 110, 116, 128, 133, 144, 152, 167,

179, 192, 204
FORMAT, 23, 32, 44, 48, 71, 97, 103, 114, 116,

128, 144, 152, 183, 192, 204
FUNCTION, 34, 47
GETENV, 245
global variable, 34

 Index

448 Index

GO, 53, 427
Greater than, 225
Greater than or equal, 225
GUI, 8
handles, 169
HASH, 246
HEADER, 54, 196
HELP, 57
HP3000 floating point, 298, 299
Identifiers, 215
IEEE floating point, 279, 281, 282, 288, 290,

310, 317, 347, 351
IF, 58, 246, 430
IMAGE, 20, 63, 80, 147, 190
IMAGE data types, 288
IMAGE E2 data type, 288
IMAGE E4 data type, 290
IMAGE I1 data type, 291
IMAGE I2 data type, 292
IMAGE In data type, 293
IMAGE J1 data type, 291
IMAGE J2 data type, 292
IMAGE Jn data type, 293
IMAGE K1 data type, 295
IMAGE K2 data type, 296
IMAGE Kn data type, 293
IMAGE P data type, 297
IMAGE R2 data type, 298
IMAGE R4 data type, 299
IMAGE U data type, 300
IMAGE X data type, 301
IMAGE Z data type, 302
IMAGE_, 150
Implicit Type Conversion, 230
ini file, 390
Installation on MPE/iX, 391
Installation on Unix/Linux, 396
Installation on Windows, 401
instsrv, 402
INTEGER, 365
INTEGER data type, 365
integer divide, 226
INTERVAL, 366
INTERVAL data type, 366
IP address, 186, 189
ISBOOLEAN, 247
ISDATE, 247, 264
ISDIGITS, 248
ISNUMERIC, 249
ISNUMP, 250
ISNUMZ, 251
kill, 400

LEN, 251, 433
Less than, 225
Less than or equal, 225
line continuation, 14
LIST, 60, 95
local variable, 34
LOCK, 148, 158
LOCKING, 157
locking hints, 164
Log on as a service, 404
Logon as a service

Windows 2000, 405
Windows NT, 404
Windows XP, 406

LONGSIZE, 135, 169, 181
MAGICON, 227, 252
MATCH, 253
MAXHANDLES, 169
MAXOPENS, 159
message files, 143
MOD, 225, 433
Modulus, 225
MPE/iX Files, 142
MSG, 143
MSGS, 82, 83
Multiplication, 225
native character, 313, 315, 316, 366
NDR, 20, 80, 143
negative, 224
non-destructive read, 143
-nostats, 85, 375
not, 224
NOT, 224, 433
Not equal, 225
NOW, 433
NOWAIT, 23, 184
NSTRING, 366
Null Comparisons, 234
Null Operations, 234
NUMERIC, 238, 249, 254, 265, 277, 309, 345,

367
numeric constants, 218
NUMERIC data type, 367
NUMP, 255
NUMZ, 256
ODBC, 20, 63, 80, 163, 190
ODBC BIGINT data type, 305
ODBC BINARY data type, 305
ODBC BIT data type, 306
ODBC CHAR data type, 307
ODBC data types, 304
ODBC DATE data type, 308
ODBC DECIMAL data type, 309

Index

 Index 449

ODBC DOUBLE PRECISION data type, 310
ODBC driver, 163
ODBC INTEGER data type, 312
ODBC LONG NVARCHAR data type, 313
ODBC LONG VARBINARY data type, 312
ODBC LONG VARCHAR data type, 314
ODBC NCHAR data type, 315
ODBC NVARCHAR data type, 316
ODBC REAL data type, 317
ODBC SMALLINT data type, 319
ODBC TIME data type, 319
ODBC TIMESTAMP data type, 320
ODBC TINYINT data type, 322
ODBC trace, 169
ODBC UNIQUEIDENTIFIER data type, 323
ODBC VARBINARY data type, 323
ODBC VARCHAR data type, 324
ODBC32 control panel, 163
ODBCTRACE, 169
OFFSET, 368
Omnidex, 152
OPEN, 8, 63, 110, 115, 124, 132, 140, 150, 166,

178, 189, 197, 202, 418, 419
Operations on nulls, 234
Operators, 224
OR, 225, 433
Oracle, 63
ORACLE, 20, 63, 80, 176, 190
ORACLE CHAR data type, 326
Oracle data types, 326
ORACLE DATE data type, 327
ORACLE FLOAT data type, 328
ORACLE INTERVAL, 329
ORACLE LONG data type, 331
ORACLE LONG RAW data type, 333
ORACLE LONG RAW_, 333
ORACLE LONG_, 331
ORACLE NUMBER data type, 335
ORACLE RAW data type, 337
Oracle sequence, 176
ORACLE TIMESTAMP data type, 338
ORACLE VARCHAR2 data type, 340
ORACLE VARCHAR2_, 340
ORACLE_HOME, 179
ORACLE_SID, 179
ORD, 237, 256
ORDER BY, 71, 110, 116, 128, 133, 144, 152,

167, 179, 192, 204
Order of Precedence, 228
packed decimal, 297
PAD, 82, 230, 256
PAGE, 66

page header, 54
page number, 55
PAGELENGTH, 82, 84, 198
PAGEWIDTH, 82, 84, 198
password, 187, 190
-pause, 375
PIC, 54, 66, 67, 225
picture, 67
port, 186, 189
port 1610, 382
-port n, 382
POS, 257
positive, 224
Preprocessing Statements, 430
PRINT, 55, 66, 431
Print Picture, 225
PRINTNULL, 82, 84, 91
Process ID, 381
Product Version, 5
production validation, 409
PROGESS, 84
PROGRESS, 82
ps, 400
READ, 11, 38, 44, 71, 101, 110, 115, 128, 133,

144, 152, 167, 179, 192, 197, 204
read loop, 8, 11
read tag, 11, 23, 38, 101, 216
read-tag, 71
RECNUM, 159
RECNUMS, 85, 87
RECORD, 367
Record comparison, 227
Record identifiers, 216
RECORD type, 367
RECOVER, 42, 99
Remainder, 225
REMOTE, 20, 30, 63, 80, 183, 381
REPLACE, 257
REPORT, 20, 63, 80, 196
RETURN, 48, 78
ROLLBACK, 80, 158, 424, 425
ROUND, 259
Schema name, 133, 166
SCRUB, 259
Self Service Portal, 6
sequence, 176, 177
server, 381
–serverinfo, 383
Services control panel, 403, 407
SET, 82, 118, 130, 134, 145, 156, 168, 180,

194, 197, 205, 390
SETVAR, 32, 92, 230, 431
SHOW, 60, 94, 170

 Index

450 Index

-showinfo, 376, 383
SHOWSQL, 170, 181
-showversion, 375, 383
SIGNED, 369
SIGNED data type, 369
SIZEOF, 259, 270
SLEEP, 260
sort order, 72
SQL, 275
SQL BINARY data type, 342
SQL CHAR data type, 343
SQL data types, 131, 342
SQL DATE data type, 344
SQL DATE_, 344
SQL DECIMAL data type, 345
SQL DOUBLE PRECISION data type, 347
SQL DOUBLE PRECISION_, 347
SQL INTEGER data type, 348
SQL INTEGER_, 348
SQL LONG VARBINARY data type, 349
SQL LONG VARCHAR data type, 350
SQL REAL data type, 351
SQL REAL_, 351
SQL Server, 63, 163
SQL Server uniqueidentifier, 323
SQL SMALLINT data type, 352
SQL SMALLINT_, 352
SQL statements, 39, 242
SQL TIME data type, 353
SQL TIME_, 353
SQL TIMESTAMP data type, 354
SQL TIMESTAMP_, 354
SQL VARBINARY data type, 356
SQL VARCHAR data type, 357
-start, 85, 97, 375
START, 82, 85, 97, 103, 375
STATS, 82, 85
stdin, 236
STR, 260, 433
STR2DATE, 239, 247, 261
STRING, 238, 254, 265, 370
String concatenation, 225
String constants, 218
String Constants, 218
STRING data type, 366, 370
Subtraction, 225
Superdex, 152
SYSTEM, 105, 265, 433
system command, 105
System Constants, 219
TAB, 54, 66
tab position, 55, 67

tar, 396
TCP/IP, 183
TEXT, 20, 23, 30, 63, 80, 188, 190, 199
text files, 199, 206
third party indexing, 152
Third Party Indexing, 154
TIME, 370
TIME data type, 370
time zone, 220
tns, 65
TOKEN, 266
TOKENCOUNT, 267
TPI, 152, 159, See Third Party Indexing
TRANS, 170
transaction, 83
Transaction Files, 143
TRIML, 251, 268
TRIMR, 251, 268
TRUE, 432
TRUNC, 268
TRY, 24, 99, 184, 242, 243, 269, 425, 427
type family, 230
UDP, 270, 271
UDPRECV, 270
UDPSEND, 271
unary negative, 224
unary positive, 224
UNLOCK, 158, 160
UNSIGNED, 371
UNSIGNED data type, 371
UPDATE, 101, 111, 118, 130, 135, 146, 161,

174, 182, 194, 198, 205
UPS, 242, 272, 433
user right, 404
user-defined function, 16, 47, 78
-v, 376
-v option, 409
-validate, 376
validation error number 20, 397
variable, 215
variable record length, 142
Variable substitution, 434
version number, 5
WAIT, 24, 184
Warehouse 1 archive file, 115
Warehouse data types, 359
Warehouse server, 183
Warehouse Server, 393, 398
Warehouse Service Installation on

Windows, 402
WHERRNO, 432
WHHOME, 394, 397
WHILE, 102

Index

 Index 451

WHPROCS, 381
WHSPID, 381
WHSTART.EXE, 402
WHVERSION, 432
writing records, 23
XEQ, 85, 97, 103, 375
YYYYMMDD, 241, 272
zoned decimal, 302

 Index

452 Index

	Table of Contents
	Chapter One - Introduction
	Product Overview
	How to Use This Manual
	More Information on the Web
	Warehouse FAQ
	Warehouse Knowledge Base
	Product Version
	Contact Us
	Chapter Two - Warehouse Scripts
	Scripting Language Overview
	Chapter Three - Warehouse Statements
	CALL statement
	CLOSE statement
	COMMIT statement
	COPY statement
	CREATE statement
	DEFINE statement
	DELETE statement
	DIRECT statement
	END statement
	ESCAPE statement
	EXIT statement
	FORMAT statement
	FUNCTION statement
	GO statement
	HEADER statement
	HELP statement
	IF statement
	LIST statement
	OPEN statement
	PRINT statement
	READ statement
	RETURN statement
	ROLLBACK statement
	SET statement
	SETVAR statement
	SHOW statement
	START statement
	TRY statement
	UPDATE statement
	WHILE statement
	XEQ statement
	! statement
	* statement
	Chapter Four - File Types
	ALLBASE file type
	ARCHIVE file type
	CSV file type
	DB2 file type
	FIXED file type
	IMAGE file type
	ODBC file type
	ORACLE file type
	REMOTE file type
	REPORT file type
	TEXT file type
	XML file type
	Chapter Five - Warehouse Expressions
	Identifiers
	Constants
	Operators
	ABS function
	ACCEPT function
	BOOLEAN function
	CHR function
	CMAP function
	CONVERT function
	DATE2STR function
	DAYNUM function
	DIRECT function
	DWNS function
	ESCAPE function
	FIELD function
	FILLL function
	FILLR function
	GETENV function
	HASH function
	IF function
	ISBOOLEAN function
	ISDATE function
	ISDIGITS function
	ISNUMERIC function
	ISNUMP function
	ISNUMZ function
	LEN function
	MAGICON function
	MATCH function
	NUMERIC function
	NUMP function
	NUMZ function
	ORD function
	PAD function
	POS function
	REPLACE function
	ROUND function
	SCRUB function
	SIZEOF function
	SLEEP function
	STR function
	STR2DATE function
	STRING function
	SYSTEM function
	TOKEN function
	TOKENCOUNT function
	TRIML function
	TRIMR function
	TRUNC function
	TRY function
	TYPEOF function
	UDPRECV function
	UDPSEND function
	UPS function
	YYYYMMDD function
	Chapter Six - Data Types
	Allbase Data Types
	IMAGE Data Types
	ODBC Data Types
	Oracle Data Types
	SQL Data Types
	Warehosue Data Types
	Chapter Seven - Installation and Execution
	Warehouse Client
	Warehouse Server
	Warehouse .ini file
	MPE/ix Installation
	Unix/Linux Installation
	Windows Server Installation
	Validating Warehouse
	Authorizing Warehouse Server Access
	Checking Connections
	Environment Variables
	Appendix A - Transactions and Error Handling
	Transactions
	Error Handling
	Appendix B - Preprocessing
	Appendix C - Character Maps
	Index

