

Warehouse
User Guide

Taurus Software Inc.
420 Brewster Avenue

Redwood City, CA, 94063

(650) 482-2022
(650) 482-2010 FAX

support@taurus.com
www.taurus.com

2/3/2005

mailto:support@taurus.com
http://www.taurus.com/

First Edition........October 1996
Second Edition.........April 1997

Third Edition.........October 1997
Fourth Edition February 2005

NOTICE

The information contained in this document is subject to change
without notice.

Taurus Software, Inc. makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Taurus Software,
Inc. shall not be liable for errors herein or for incidental or
consequential damages in connection with the use of this material.

This document contains proprietary information which is protected by
copyright. All rights are reserved. No part of this document may be
reproduced or translated in any form without the prior written consent
of Taurus Software, Inc.

© 1989-2005 by Taurus Software, Inc.

 2/3/2005

Table of Contents

Introduction ..1
Product Overview ...1
How to Use The Warehouse Manuals ..3
Contacting Customer Support..5
Product Version ...5
Manual Conventions ...6
Product Suggestions or Manual Corrections6

Product Concepts..7
Product Vision..7
Product Uses...9

Data movement ...9
Test environments ...10
Archiving..11

Archiving to offline media..12
Archiving to online historical databases ...13
Rolling Archiving Strategy ..14

Warehouse's Scripting Language...15
Archiving Example ..15
Retrieval Example ...18
Establishing relationships with Warehouse...19
Data Movement ...21
Test Environments ..25

Platform Specific Information..27
Introduction..27
HP3000 ...29

Running Warehouse on HP3000..29
Hints and Tips...29

File Equations ..29
Outputting to Tape on HP3000 ...30
Executing Warehouse in batch on the HP3000...............................30
Building Archive Files Before Archiving...30
Printing reports on the HP3000 ..31
Warehouse abnormal termination within a job stream..................31

Data Structures Supported on HP3000 ...31
IMAGE..32
Oracle..33
Allbase ..34

Unix ..35
Running Warehouse on Unix...35

2/3/2005

Outputting to Tape on Unix...35
Printing reports on Unix..35

Data Structures Supported on Unix ..35
Oracle..36

Windows...37
Running Warehouse on Windows ...37

Printing reports on Windows...37
Data Structures Supported on Windows37

ODBC..38
ORACLE ...38

Warehouse Script Examples ..39
Introduction..39
Database to Database Examples ..41

Archiving to an online historical environment in an IMAGE
environment...41
Moving multiple source databases to a similiar online historical
environment. ..44
Creating a summarized historical data file..50
Incremental loading of historical database ..55
Script designed to be able to be restarted ..58
Flat file used as selection for archival process61
Maintaining logical data structures when moving from database
to database ...66
Checking records counts before moving data70
Handling data conversion issues including logical data
conversion changes ..72
Using SQLNET to access a remote Oracle database77

Freeze File Examples..79
Moving historical data to an offline freeze file79
Moving historical data to an offline freeze file83
Creating a historical archival log and moving data to a offline
freeze file. ...87
Retrieval historical data from a freeze file ...90
Accessing multiple freeze files ..93
Printing information from the freeze file ...96
Using freeze files to create test environments100

Mixed File Examples...103
Loading data from a flat file to an Oracle database.............................103
Using a flat file to drive a Warehouse process110

 2/3/2005

Introduction

Product Overview Up until or not so long ago, the applications being

developed focused on collecting data and providing
assistance with day-to-day functions, like taking an
order, billing an order, and shipping an order.
Today's environment includes requirements for
keeping data for long periods of time, reformatting
data for a number of different uses and creating
subsets of data for test environments and data
warehouses. What is needed is a way to selectively
move data around paying special heed to data
structure changes and handling those issues
automatically.

 Warehouse is a versatile tool which allows the

selection of logical groupings of data, e.g. a
purchase order and all its related information, and
the movement of the data somewhere else, e.g.
historical environment. With Warehouse you can
select information from one or more data files,
including IMAGE, Allbase, DB2, SQLServer, flat
files or Oracle. These files can be physically or
logically related. Based on selection criteria that
you define, Warehouse moves the data to offline
media, disc, or other data files.

 Warehouse was initially designed as an archival

tool to manage the needed but not always wanted
volumes of historical data. Warehouse allowed you
to selectively move historical data out of the way.
Since its introduction in 1989, Warehouse's uses
have expanded. We see our installed base using
Warehouse in a variety of ways including:
satisfying FDA requirements of lot related data,
notifying customers of impending shipments of
purchased goods through EDI, creation of test
environments for integration testing of complicated
and complex applications, and the creation of data
warehouses.

 If you are porting information from one platform to

another you can use Warehouse's archive files to
transport related data via one file and FTP it to the
new location. Warehouse archive files have been
designed to be platform independent. So, once the

2/3/2005 Chapter One/Introduction 1

Introduction

data has been relocated, Warehouse will
understand data stored in the archive file and move
the data to your new file structure and deal with
any data structure issues automatically.

 Porting information is part of the data warehouse

process. Warehouse can be an invaluable tool in
extracting data from legacy systems, making the
data consistent, transporting the data and its
metadata to the integration process, populating the
data warehouse and finally aging information out
of the data warehouse. Warehouse's flexibility in
dealing with logical groupings of data and file
structural differences makes it a must have in this
new emerging environment.

 If you are archiving historical data, you can archive

that information to tape or some other online
historical environment. During the archival
process, you can delete, update, and print
information. Warehouse remembers the structure
of your files, so if the structure of any file has
changed since the archival process, Warehouse
automatically handles the necessary data
conversion.

 If you are creating test environments, Warehouse

allows you to create a test environment to handle a
number of different test requirements. You can
create them randomly or selectively. If your
application requires linkages from data file to data
file, Warehouse can select just the appropriate data
and maintain those logical linkages. Select just
that data needed to reproduce a problem and save
that data for future regressive testing. Select data
from the production version and move it into the
new data structures under development,
Warehouse will automatically handle any
necessary data conversions. If necessary,
Warehouse can even update or change the
production data to shield sensitive data to be used
in the test environment.

 Experience the benefits of Warehouse's abilities to

2 Chapter One/Introduction 2/3/2005

Introduction

archive and create test and reporting files. Enjoy
extra disc space, reduced processing time due to
fewer records to process, high quality test data, and
easy data structure conversions through the use of
Warehouse today.

How to Use The
Warehouse Manuals

There are three manuals in the Warehouse
documentation set. This may seem like a lot of
documentation and you might be concerned the
product is complicated to learn. Don't worry.
Warehouse is built from twenty statements. It is
easy to learn yet robust enough to handle the
complicated problems that face your organization.
To hasten the learning process for the variety of
users using our product, we have designed manuals
to try and match as many of the learning styles as
we have encountered.

 Each of the manuals is designed for the progressive

learning that you will go through as you become
familiar with the Warehouse product. Most of our
users find the Warehouse Tutorial helpful as an
introduction to the Warehouse product. Its hands-
on approach to introducing the concepts and
capabilities of Warehouse is very effective for the
user that wants to get started right away.

 The Warehouse User Guide is organized by the

types of situations you might be trying to solve
with Warehouse. The User Guide contains the big
picture concepts including the design philosophy
surrounding the Warehouse product. It also
provides entire script examples solving real-life
archiving, test database and data movement
problems. These examples come directly from our
install base. You will find techniques that may not
be obvious in the plain syntax of each command.

 If you are looking for the default values, exact

syntax, or the handling of a particular data file or
data type, you will find the answers in the
Warehouse Reference Manual. In addition to the
syntax of Warehouse's commands, you will find

2/3/2005 Chapter One/Introduction 3

Introduction

answers to the syntax of the Warehouse's
expressions, the rules regarding the processing of
expressions, installation information and details
regarding data file restrictions to each command.

 Just starting? We suggest that read the Warehouse

Tutorial first. Once you are comfortable with the
concepts of the scripting language, the User Guide
can provide you with some illustrative examples
which may be helpful in developing your own
procedures. For technical details, see the
Warehouse Reference Manual for answers.

Warehouse User Guide The Warehouse User Guide is structured to make

learning Warehouse easy and painless. In Chapter
2, Product Concepts, the philosophy of the design
of Warehouse are explored. In addition to this big
picture of Warehouse, the uses of the product are
explored and the components of the scripting
language are introduced. Chapter 3, Platform
Specific Information, describes specifics nuances
regarding the uses of Warehouse on that particular
platform. Chapter 4, Warehouse Script
Examples, provides complete script examples for
each of the major areas of use for Warehouse
including: archiving, retrieval, test environment
and the growing field of data movement.

 The chapters of the Warehouse User Guide are as

follows:

• Chapter 1 - Introduction
• Chapter 2 - Product Concepts
• Chapter 3 - Platform Specific Information
• Chapter 4 - Warehouse Scripts Examples

 Since each chapter builds on information presented

in earlier chapters, start reading at Chapter 2,
Product Overview. Once you have read through
the entire guide, specific information can be quickly
accessed through the table of contents.

4 Chapter One/Introduction 2/3/2005

Introduction

Contacting
Customer Support

At Taurus, we have purposely bundled our updates
and phone-in-consulting together as one product.
We believe that our customer support is just as
much a part of product as the documentation. We
therefore encourage you to call them with any
questions - whether it is about the correct syntax of
the PRINT statement or the right archiving
strategy for your company. You can contact them
via email, telephone, or fax. To contact Customer
Support by phone, dial (650) 482-2022 x2. To
contact Customer Support by fax, dial (650) 482-
2010. To contact Customer Support by email,
address the message to support@taurus.com.

 At minimum, the support representative, will need

to know:

 • Your problem

• Your platform and operating system
• Warehouse version
• How to contact you

Support Hours Telephone help is available Monday through Friday

from 8:30 a.m. to 5:00 p.m. Pacific Time (holidays
excluded). For those with email, please send your
information to support@taurus.com. If you do not
have email, please fax copies of pertinent
information to (650) 482-2010, attention Customer
Support. Please remember to include your name,
company name, and phone number on all messages.

Product Version If you place a customer support call, it is important

that you know the Warehouse version number that
you are using. Since changes are made to
Warehouse between each release, the Customer
Support Representative may not be able to assist
you properly without knowing the product version
you are using.

 The version number appears when Warehouse is

run, and has three parts: major release (single
character), update (number) and fix level

2/3/2005 Chapter One/Introduction 5

mailto:support@taurus.com
mailto:support@taurus.com

Introduction

(numbers). 2.01.0001 is an example of a product
version number with a major release of 2, update
level of 01, and fix level of 0001.

 Knowing the correct version can save you time

when calling Customer Support.

Manual
Conventions

To make it easier to locate and understand topics in
this manual we have used several conventions.
The conventions are as follows:

 • File names, job names, terminal response, and

coding for job streams are shown in courier
type font.

 • References to keyboard functions are shown in

upper case and bracketed with less than and
greater than symbols (e.g. <RETURN>).

Product
Suggestions or
Manual Corrections

We have made every attempt to include the
examples that will be the most helpful to extending
your use of the Warehouse product. It is possible
we have forgotten something that would help. It is
also possible there are errors in this manual. If you
find that either of these situations exist, please give
us a call so we can correct it. We cannot continue
to improve the documentation or the product
without your input.

 To submit a product enhancement or

documentation change, either call customer
support or use the form on our web site,
http://www.taurus.com.

6 Chapter One/Introduction 2/3/2005

http://www.taurus.com/

Product Concepts

Product Vision We have never seen product documentation which

details the vision of the product from the
developer's perspective. This section would not be
in our documentation set if it was not for the
requests of our users who wanted to get an overall
understanding of how the product worked and how
it was created.

 Warehouse is written in C and is designed to be

platform independent. The product is available for
multiple platforms and for a collection of data file
types.

 When prospective clients ask us, "So, what does

Warehouse do?" it is hard to answer because it can
be used for so many different kinds of projects.
Maybe the best way to answer that question is to
say that at Taurus, we think of Warehouse as a
data selection and movement tool. When we
originally designed the product back in 1989, disc
space was expensive and companies were looking
for a way to manage their disc space better. Our
investigation into how people were using their disc
space showed us that 80% of the disc was being
used by application data files. If companies were
able to archive and delete obsolete data from their
application data files, they could recover the disc
space for other uses.

 The industry has changed since 1989. Disc space is

inexpensive. Now, companies say they are
concerned with using their data to get the answers
they need and they want to manage their data
better. So, in 1993, in response to these new issues
our customers and prospects were facing, we
redesigned Warehouse from the ground up.

 The projects that our prospects and clients were

working on, whether they are creating test
databases, removing historical information, or
summarizing data for a decision support system, all
have the same underlying problem -- how to select
the data desired (regardless of the number of pieces
it takes to make up the THING you want to move)

2/3/2005 Chapter Two/Product Concepts 7

Product Concepts

and move IT to the place desired without having to
deal with differences in data structures between
the sources and the targets.

 Warehouse was designed to handle these issues.

Warehouse determines what the targets look like,
binds the related data which make up the objects,
acts on those objects as a unit, and then moves the
objects to your targets while dealing with any data
conversion that may need to occur. Some examples
of those conversions may be: changes in data
mapping, changes in data types, changes in data
lengths, new items, and missing data items.
Warehouse handles all these issues automatically.

 How does Warehouse accomplish this internally?

Warehouse is written in modules. The kernel
handles all generic functions like archive files, flat
files and printing. The data file modules handle
the read, writing, and locking required for each
database subsystem. The data types for each
database are supported in their native language.
So when the data is moved from one integer type to
another, Warehouse assures that the data will be
stored in the target file as if it was originally
created there.

 The scripting language is designed to provide

flexibility in describing relationships between data
files, tables and datasets. There are a number of
functions to help with the selection of data and to
deal with the inevitable data type mismatches.
There are constructs which allow you to override a
subsystem's understanding of a data structure.
There are programming constructs to help in
dealing with complicated tasks like summarization
and calculation. We feel that we have put together
a set of constructs to handle the majority of data
selection and movement projects you might
encounter. However, we are always learning, so if
you find an issue we haven't thought of, call
customer support.

8 Chapter Two/Product Concepts 2/3/2005

Product Concepts

Product Uses In earlier discussions, we mentioned that

Warehouse is used by our clients for a wide variety
of uses. This is true. However, the uses can be
grouped into three major categories: data
archiving and retrieval, creating test environments,
and data movement projects. Let's examine each of
these areas from both the user's and information
service's perspectives.

Data movement These days it doesn't seem to be enough that the

data is available via the online transaction
processing applications. More and more often there
are demands for data extracted from the online
transaction processing application be moved to
another file or files for a variety of reasons. Some
of our clients share their experiences.

 A manufacturing and distribution company's most

important clients requested notification of
shipment of their orders. This notification would
allow the client to notify the appropriate shipping
and receiving departments and expedite receipt of
these goods so they could be moved to the
showroom floor as quickly as possible. To satisfy
this requirement, our client needed to extract
shipment information and notify their client via a
standard EDI transaction that the shipment was
on its way. This project involved selecting just the
shipments for these special clients from the
application database and consolidating and
transforming the data to standard EDI transaction
files. Warehouse provided them with the
capabilities needed to satisfy this important client's
request.

 Another client said they needed a way to track

expenses at the department level in order to
determine what was being spent and why. Their
data was organized by full account name. It was
not possible to drill down through the data to get
answers to what expenditures were made at each
department level. What they said they needed was
a way to extract data from multiple IMAGE sources

2/3/2005 Chapter Two/Product Concepts 9

Product Concepts

and populate a relational database. Warehouse
extracted and transformed the data from the
IMAGE database and copied the data directly into
the Oracle tables needed. The accountant was then
able to use his OLAP tool to find his answers from
the new decision support system.

 Another client had the need to create a training

database which was based on data residing in an
Allbase database on their production system.
Unfortunately, the training database resided on
another machine. What they wanted was a way to
extract a small representative amount of data from
the production application, change the name fields
(to protect people's privacy), and put it into the
Allbase database on the other machine. Warehouse
provided them with the capabilities to do this
project. Even though these two databases resided
on different machines of the same platform, they
could have just as easily have been machines of
different types.

 As you can see, our client's user's requirements for

data span many different uses but the solution
remains constant -- select the needed data,
reformat it, and copy it to the new location.

Test environments The next most common use of the product is in

creating test environments. Creating test
environments for applications which are
complicated or have data which flows from one
application to another is problematic for most
information services departments. If you don't use
a complete copy of all the data files, you run the
risk of missing a problem in the flow of the data.
However using an entire copy of the production
environment makes validating the test results very
hard because of the sheer volume of data you must
deal with.

 What Warehouse allows you to do is select small

logically intact groups of data from the production
environment and populate a test environment. You

10 Chapter Two/Product Concepts 2/3/2005

Product Concepts

get live "real" data. Because of the reduced size of
the environment, you use less disc space, test runs
are shorter, and validation of the data is easier.
We had one client that experienced a 30% reduction
in the errors that occurred when releasing a new
version of the application software into production.
In addition to the overall reduction of errors, the
severity of production interruption (i.e. user
functional downtime, e.g. production line shutdown
because of the inability to enter work orders) was
decreased.

 There is no doubt that a good test environment is a

necessary tool for any shop that does routine
development. Now, with Warehouse, creating and
refreshing a test environment is easy.

Archiving Users require historical information for a variety of

reasons. Some of the common reasons they cite
are:

 • Historical perspective is valuable when making

decisions about where the company is going.
Depending on the complexity of the issues and
decisions you are trying to make, you may need
the data organized in a different way.

 • Resolving customer or vendor issues/disputes

regarding payment or services provided.
Depending on your business, research into a
problem may require many years of history.
The ideal access for these types of issues is
online access -- maybe in a historical database.

 • Regulatory or audit requirements. If the data is

related in any way to your company's finances,
you can be assured that the state and/or the
federal government has the right to audit it for
at least seven years.

 In the best of all worlds, you could keep the data

without any penalties. But there are penalties.
Penalties and choices that the information service

2/3/2005 Chapter Two/Product Concepts 11

Product Concepts

organization is faced with daily. They include:
degraded performance, long search times, long ad
hoc report times, and ever expanding disc space
requirements. When you find yourself faced with
users having requirements for historical
information and conditions like those described
above, you could solve your problems with
archiving.

 So, where do you start? Well, you need to decide on

an archiving strategy that is right for your
company. The available strategies are: archive to
online historical environment, archive to tape, or
implement a rolling strategy where you first
archive to a historical environment and then
archive to tape. Let's review each of these
strategies and their respective pros and cons.

Archiving to offline
media

The most straight-forward way is to archive
directly to tape. This methodology copies and
deletes closed transactions to tape based on the
selection criteria you provide. The archiving
process can be done online or in batch. It can be
run as often as you desire.

 The result of the archiving process is an archive

tape which contains the selected historical
information. That information is deleted from the
production environment. The deleted information
provides additional capacity in the affected
datasets. Processes which read through work
orders serially run faster because there are fewer
records to review. The historical information is
available for reporting or retrieval if the need ever
arises. Reporting can be done directly from tape.

 If you ever need to retrieve the information from

the offline storage, Warehouse will handle the data
conversions that are necessary to bring that "old"
data back into the current production environment.
Warehouse can handle a number of data
conversions automatically including: data type
conversions, data mapping, data length changes,
new data item initialization, and omission of non-

12 Chapter Two/Product Concepts 2/3/2005

Product Concepts

existent data items. This means you will never be
stuck with archived data that you can't bring back
and you will not be faced with a maintenance
headache.

 The disadvantage of this methodology is that all

requests for historical information that has been
archived to tape must come through the
information services organization and requires
someone to mount a tape to service that request.
You must also be attentive to the length of time you
are required to keep historical information as a
tape's shelf life is only seven years. If the shelf life
is a problem for you, you could archive to optical
disc.

Archiving to online
historical databases

The second option is to relocate historical
information from the production environment into
an online historical database. This database would
be an exact copy of your production environment
and would be accessible to your users via the
application's usual inquiry and reporting
transactions. Typically these environments are
read only, so as to prevent users from inadvertently
rewriting history.

 The result of the archiving process is a production

environment which contains only "active"
information, maybe current year plus six months,
and a historical environment which contains all
other historical information. Performance for
closing, extensive inquiries and reports in the
production environment is dramatically improved.
Access to the historical information is easy and
uses the tools the end users are already familiar
with. No additional training or special procedures
need to be implemented. The archive procedures
can be run as part of month-end close
automatically and not impact the computer
operations staff with tape mounts and special job
scheduling.

 The disadvantage of this methodology is that no

disc space is saved. There is a one time initial

2/3/2005 Chapter Two/Product Concepts 13

Product Concepts

setup of the historical environment. Over time, you
may want to archive to tape from your historical
environment to make the volumes of data more
manageable.

Rolling Archiving
Strategy

The Rolling Archiving Strategy encompasses both
of the archiving strategies described above.
Historical information is first relocated from the
production environment into the online historical
environment. Once it stays there for some period of
time, the historical information is relocated from
the online historical environment to tape or some
other offline storage.

 The result of the archiving process is a production

environment which contains only "active"
information, maybe current year plus six months, a
historical environment which contain historical
information for some specified time frame and all
other history is stored in the offline storage
archives.

 Performance gains are experienced for both the

production environment and historical
environment. Access to the historical information
is easy and uses the tools the end users are already
familiar with. No additional training or special
procedures need to be implemented. Reports of the
offline historical data can be produced without
retrieving the information back on to the system,
or, if needed the selected information can be
relocated from the tape into the historical
environment.

 The disadvantage of this methodology is that no

disc space is saved until you start to roll history
offline. There is a one time initial setup of the
historical environment. For information which has
been relocated to offline storage, information
service personnel will need to be involved in either
retrieving or reporting of information.

14 Chapter Two/Product Concepts 2/3/2005

Product Concepts

Warehouse's
Scripting Language

How does Warehouse accomplish this variety of
tasks? Warehouse uses a scripting language which
defines those records or groups of records and
performs the appropriate actions on them. The
scripting language is composed of three major
parts: accessing files, selecting data, and data
movement actions. To illustrate these components
more clearly, let's review a series of Warehouse
scripts.

 Before we get into the details about the examples

themselves, some general information about
Warehouse and how the examples are presented
might be helpful. Most scripts are developed in an
editor and then executed in Warehouse via the XEQ
statement. Scripts can be typed in uppercase or
lowercase or both. Blank lines can be used.
Comment lines are entered with * in position one
and are ignored by Warehouse. If a statement
needs to be continued over the limits of one line,
use &. When Warehouse interprets the script, it
numbers each line as it is processes it.

Archiving Example Our first example is an archive example. We are

going to archive all customers whose status is
inactive. These inactive customers are copied to
the archive file and then deleted from the Oracle
database. The result of this archive process will be
an archive file which contains only inactive
customers. The Oracle database will contain no
inactive customers.

 1> open cust oracle scott/tiger

2> create inactc archive archive1
3>
4> read masters = cust.company_master for &
5> status = "I"
6> copy masters to inactc.company_master
7> delete masters
8> endread
9> go

 The first step in any script is to open the files you

plan to access. In our script, in line 1 Warehouse
opens the Oracle database using the user, scott,

2/3/2005 Chapter Two/Product Concepts 15

Product Concepts

and password, tiger. The database is given a tag,
cust, which is used any time we need to refer to
the contents of this database.

 In line 2, Warehouse creates a new archive file,

archive1, in the logon group and account. This
new archive file is given the tagname of inactc.
We will use this tag whenever we want to refer to
the archive file. Line 3 is a blank line. Blank lines
are helpful in making the scripts easier to read and
understand.

 Once the files have been opened, we need to tell

Warehouse what we wish to select out of those files.
Selection is done using the READ statement. Each
READ statement is given a name or tag to refer to
the data selected. Our READ statement took more
than one line to enter, the statement is continued
to the next line using &. In lines 4 and 5, the read
statement tagged masters, reads records in the
table company_master which have the value I in
the column status from the database tagged
cust. Notice that the database name tag is listed
first followed by the table name, e.g.
cust.company_master.

 Please note that in order to ever execute lines 6 and

7, the record must have fulfilled the selection
criteria in the READ statement. Line 6 copies the
selected row to the archive file tagged INACTC.
Notice that the actions like copy happen to tags. So
in the COPY statement, we copy the masters tag to
the archive file tagged, inactc and give it a name,
company-master. You may name or tag the data
whatever you please, but it makes sense to name it
the same as your data source.

 Line 7 deletes the selected records. Notice that the

action, DELETE, always refers to the tag, masters.

 Line 8 terminates this read block. All read blocks

begin with a READ statement and end with an
ENDREAD statement.

16 Chapter Two/Product Concepts 2/3/2005

Product Concepts

 Warehouse will not process any data until it

reaches a GO statement. Line 9, begins the
Warehouse processing.

2/3/2005 Chapter Two/Product Concepts 17

Product Concepts

Retrieval Example As a result of the execution of the previous script,

we now have an archive file which contains inactive
customers. To retrieve information from the
archive file, you write a script.

 1> open inactc archive archive1

2> open cust oracle scott/tiger
3>
4> read m = inactc.company_master for &
5> cust_key = "1234"
6> copy m to cust.company_master
7> endread
8> go

 The first step in any script is to open the files. In

line 1, Warehouse opens the archive file, archive1
and tags it inactc. In line 2, Warehouse opens the
Oracle database using the user, scott, and
password, tiger. Warehouse tags it cust.

 Line 3 is a blank line.

 Lines 4 and 5 are the beginning of a read block.

This read loop is tagged M. It reads the
company_master table from the archive file
tagged inactc for records that have 1234 as their
value in the cust_key field. The READ statement
didn't fit on one line so it was continued on the next
line using the &.

 Line 6 copies the selected record to the

company_master table in the database tagged
cust.

 Line 7 terminates the read loop.

18 Chapter Two/Product Concepts 2/3/2005

Product Concepts

Establishing
relationships with
Warehouse

Unfortunately, most databases and the problems
people are trying to solve are not this simple. The
product needed a way to describe both logical and
physical relationships between the data files. The
way Warehouse establishes relationships is
through the indented read loop. Let's expand our
last example to archive the inactive customer and
their ship-to-addresses.

 1> open cust oracle scott/tiger

2> create inactc archive archive1
3>
4> read masters = cust.company_master for &
5> status = "I"
6> copy masters to inactc.company_master
7> read ship-to = cust.ship_to_addr for &
8> company-key = master.company_key
9> copy ship-to to inactc.ship_to_addr
10> delete ship-to
11> endread
12> delete masters
13> endread
14> go

 Line 1 opens the Oracle database referenced by our

Oracle home and SID and tags it cust. Line 2
creates the archive file, archive1, in the logon
group and account.

 Line 3 is a blank line.

 Lines 4 and 5 build the read statement tagged,

masters. This read loop selects records from the
company_master table in the database tagged
cust with the value of I in the status field.

 Line 6 copies the selected records to the archive file

tagged, inactc, and named or tagged
company_master.

 Our read loop tagged, ship-to, in lines 7 and 8 is

our first example of an indented READ statement.
Indented READ statements are how Warehouse
establishes relationships. Indented READ
statements are only executed if the above selection
criteria have been met. So Warehouse only
executes lines 7 and 8 if we have a customer that is
inactive. Warehouse establishes the relationship

2/3/2005 Chapter Two/Product Concepts 19

Product Concepts

between masters and ship-to in the FOR clause
of the READ statement. So, Warehouse selects the
records from the ship_to_addr table in the
database tagged cust matching the column
company_key with the selected record from the
masters READ loop with the value contained the
company_key column in this table.

 For each record selected, Warehouse in line 9

copies the selected ship-to record to the archive
file tagged, inactc, and tags it ship_to_addr.

 In line 10, Warehouse deletes the selected ship-to

record from the database tagged cust. Notice that
all data movement actions: COPY, DELETE, and
UPDATE are done to tags.

 Line 11, terminates the ship-to read loop.

 Line 12, deletes the selected masters record.

 Line 13, terminates the masters read loop.

 Line 14, begins the Warehouse processing of the

data.

20 Chapter Two/Product Concepts 2/3/2005

Product Concepts

Data Movement Scripts for data movement projects are very

different than either scripts for archiving/retrieval
or test databases. This is because when you move
data from one source to another, you typically want
to change the organization of the data. In our next
example the client wanted to move general ledger
data from an IMAGE based transaction processing
application to an Allbase based decision support
system.

 1> OPEN GLDB IMAGE GLDB PASS=; MODE=5

2> OPEN ADB Allbase ACCTDBE
3>
4> DEFINE ACBAL: RECORD
 1 -> GLACBALNUM : Allbase CHAR(24)
 25 -> GLACBALREGION : Allbase CHAR(2)
 27 -> GLACBALPRODUCT : Allbase CHAR(4)
 31 -> GLACBALCYAMT : Allbase DECIMAL(14,2)
 39 -> GLACBALLYAMT : Allbase DECIMAL(14,2)
 47 -> GLACBALUPD : Allbase CHAR(23)
 70 -> END
12>
13> DEFINE YEAR AS I1
14> SETVAR YEAR = 94
15>
16> READ ACCMAS = GLDB.ACCMAS FOR ACCTYP = 3
17> SETVAR ACBAL.GLACBALNUM = ACCNUM
18> SETVAR ACBAL.GLACBALREGION = &
19> STR(ACCNUM,1,2)
20> SETVAR ACBAL.GLACBALPRODUCT = &
21> STR(ACCNUM,4,4)
22> READ AMTFIL1 = GLDB.AMTFIL FOR &
23> ACCNUM = ACCMAS.ACCNUM AND &
24> AMTYR = YEAR
25> SETVAR ACBAL.GLACBALCYAMT = AMTARRAY[1]
26> ENDREAD
27> READ AMTFIL2 = GLDB.AMTFIL FOR &
28> FOR ACCNUM = ACCMAS.ACCNUM AND &
29> AMTYR = YEAR -1
30> SETVAR ACBAL.GLACBALLYAMT = AMTARRAY[1]
31> ENDREAD
32> SETVAR ACBAL.GLACBALUPD = &
33> "1900-01-01 00:00:00.000"
34> COPY ACBAL TO ADB.ARCHDB.GLACBAL
35> ENDREAD
36> GO

 Line 1 opens the IMAGE database GLDB in the

logon group and account using the database
password ; and database open mode of 5. The
database is tagged GLDB.

 Line 2 opens the Allbase database environment

ACCTDBE in the logon group and account. This

2/3/2005 Chapter Two/Product Concepts 21

Product Concepts

database is tagged ADB.

 Line 3 is blank.

 Line 4 begins the definition of a record type

variable. This type of variable is very handy in
creating a record which is composed of data items
from more than one source. The variable works
like a holding area for the data until it is time to
write it out. When you begin a variable composed
of many data items, Warehouse keeps track of the
length of the records as you define each data item.
In the script you can see the length indicator, e.g.
25->, displayed to the left of the data item.
Warehouse generates this number. It is not
contained in the script.

 The next lines define each of the components of the

ACBAL record variable. Notice that the record is
defined using the native data types of Allbase as
the record will eventually be written out to an
Allbase table. The END signifies the end of the
definition of this record variable.

 Line 12 is a blank line.

 Line 13 defines a variable named YEAR as an

IMAGE one word long integer.

 Line 14 initializes the variable YEAR to 94.

 Line 15 is a blank line.

 In line 16, the read loop tagged, ACCMAS, reads the

ACCMAS dataset in the database tagged GLDB for
records whose value in the ACCTYP is 3.

 Line 17 sets the value of GLACBALNUM in the ACBAL

record to the value contained in the data item
ACCNUM in this record. So, we use the variable to
hold the parts of the record that we need.

 Lines 18 and 19 store the value contained in the

first two positions of ACCNUM in GLACBALREGION in

22 Chapter Two/Product Concepts 2/3/2005

Product Concepts

the variable ACBAL.

 Lines 20 and 21 store the value contained in the

positions 4 through 7 inclusively in the data item
ACCNUM in GLACBALPRODUCT in the variable
ACBAL.

 Lines 22, 23, and 23 define the read loop tagged,

AMTFIL1, which reads the AMTFIL dataset in the
database tagged GLDB for account numbers which
match the current account number being read in
the ACCMAS read loop and have the value of the
variable YEAR in the data item AMTYR.

 Line 25 sets GLACBALCYAMT to the value contained

in the first instance in the array data item called
AMTARRAY. The square bracket, e.g. [], defines
which element of the array you want.

 Line 26 terminates the read loop tagged AMTFIL1.

 Lines 27, 28, and 29 are an example of the need for

read loop tags. Read loop tags allow us to uniquely
identify a set of records selected by a read
statement. When you want to read the same
dataset for two different conditions, if read loops
didn't have tags, you wouldn't be able to identify
which of these two conditions you are referring to
when you copy or delete. Read tags allow this
unique identification which is so critical when
accessing the same dataset multiple times. Line 27
reads the data set AMTFIL (again) in the database
tagged GLDB for the account number matching that
selected in the read loop tagged ACCMAS and having
a value in AMTYR matching the value in the
variable YEAR minus 1. In other words, we are
getting the same account but using last year's date.

 Line 30 sets GLACBALLYAMT in the variable ACBAL

to the value contained the first instance in
AMTARRAY.

 Line 31 terminates the read loop tagged AMTFIL2.

2/3/2005 Chapter Two/Product Concepts 23

Product Concepts

 Line 32 and 33 sets GLACBALUPD in the variable

ACBAL to the string listed.

 Line 34 copies the completed record, ACBAL, to the

Allbase table.

24 Chapter Two/Product Concepts 2/3/2005

Product Concepts

Test Environments Scripts for test environments are not much

different in substance from archiving scripts. As a
rule, they differ only in that they: touch more of the
database, only copy information, and must adhere
strictly to the physical relationships imposed by the
database structure. In our next example, a random
sample of customer records is required. The user
wants 100 customers and their associated ship-to
and contact records.

 1> open cust image custdb pass=READ mode=5

2> open test image custdb.data.test &
3> pass=WRITE mode=3
4> define cust-cnt : i1
5> setvar cust-cnt = 0
6>
7> read c = cust.customer for cust-cnt < 100
8> copy c to test.customer
9> setvar cust-cnt = cust-cnt + 1
10> read ship-to = cust.ship-to-addr for &
11> company-key = c.company-key
12> copy ship-to to test.ship-to-addr
13> endread
14> read contact = cust.encounter for &
15> company-key = c.company-key
16> copy contact to test.contact
17> endread
18> endread
19> go

 Line 1 opens the IMAGE database custdb in the

logon group and account using the password READ
and the open mode 5.

 Lines 2 and 3 open the IMAGE database custdb in

the data group and test account using the open
mode of 3 and the database password WRITE.

 Line 4 defines a Warehouse variable. It is named

cust-cnt and is an integer whose length is one
word. For information on data types, see the
Warehouse Reference Manual in the chapter
entitled Data Types.

 Line 5 initializes cust-cnt to the value of 0.

 Line 6 is a blank line.

 In line 7, the read loop tagged c, reads the

2/3/2005 Chapter Two/Product Concepts 25

Product Concepts

customer dataset in the database tagged cust,
checking the value of cust-cnt for each record to
ensure that it is less than 100.

 Line 8, copies records selected in the read loop

tagged c to the customer dataset in the database
tagged test.

 Line 9, increments the cust-cnt variable.

 Lines 10 and 11, are another example of an

indented read statement. Remember that an
indented read statement defines relationships
between different datasets or data files. In this
read loop tagged ship-to, Warehouse reads the
associated records in the ship-to-addr dataset in
the database tagged cust matching on customer-
key.

 Line 12 copies the selected record to the ship-to-

addr dataset in the database tagged test.

 Line 13 terminates the ship-to read loop.

 Line 14 and 15 are another example of an indented

read statement. In this read loop, contact,
Warehouse reads the associated records in the
encounter dataset in the database tagged cust
matching on the customer-key read in the c read
loop.

 Line 16 copies the selected record to the contact

in the database tagged test.

 Line 17 terminates the contact read loop.

 Line 18 terminates the c read loop.

26 Chapter Two/Product Concepts 2/3/2005

Platform Specific Information

Introduction Warehouse was designed to be non-platform

specific. This has many advantages. The
Warehouse that you run on UNIX has the same
statements and features as the product you run on
MPE/iX. However things like installation and
program file names differ from one platform to
another. This chapter deals with those differences.

2/3/2005 Chapter Three/Platform Specific Information 27

HP3000

HP3000 Warehouse runs on MPE/iX version 4.0 and

forward. All software includes a single file,
TAURUSWH.PUB.SYS, which once restored and run
creates the TAURUS account and restores the
Warehouse software and its support files into that
account. For more information regarding the exact
installation instructions, please see the Warehouse
Reference Manual.

Running
Warehouse on
HP3000

To run Warehouse:

 :RUN WH.WHII.TAURUS

 If you have purchased additional database modules

such as: Oracle or Informix, see the section on
database specific information in this chapter.

Hints and Tips C, the language that Warehouse is written in, was

primarily a language used in the UNIX world. As a
result of using C instead of a language originally
developed for use on the HP3000 like COBOL or
PASCAL, things don't always happen as you expect
them to. This next section is meant to help you
navigate through those differences as painlessly as
possible.

File Equations File equations are respected and can be used to

point to another file. However, for the clarity of the
script, it is better to fully "document" the location of
the file in the OPEN statement. For example, if the
file resides in the DATA group and you are
currently logged onto to the PUB group, both of the
examples below will work.

 open datafile text datafile.data

 or

 :file datafile=datafile.data

:whii
open datafile text datafile

2/3/2005 Chapter Three/Platform Specific Information 29

HP3000

Outputting to Tape on
HP3000

On other platforms, devices are not handled any
differently than a file. When you write to tape
drive, you are responsible for writing to that "file"
and handling the consequences yourself. In order
to make a product which could handle this
philosophy, tape handling had to be modified
slightly to run on platforms that have specific
hardware drivers.

 When writing to tape on the HP3000 use labeled

tapes. The labeled tape will keep the volume set
together, in case your archive spans more than one
reel. Below is an example of the file equations
needed to write to a labeled tape.

 :file arctape;dev=dat;label=arc1995

:whii
1>open odb oracle fang/fum
2>create orcarc archive *arctape

Executing Warehouse
in batch on the
HP3000

Most of the work that you will do with Warehouse
will happen in job streams. Running Warehouse in
a job stream is the same as running it online. To
reexecute Warehouse scripts, you may want to put
the scripts in editor files and XEQ them. A sample
job stream follows:

 !JOB WHARC, MGR.PROD,DATA

!FILE ARCTAPE;DEV=DAT;&
 LABEL=ARC!!HPYEAR
!WH.WHII.TAURUS
XEQ ARCSCR
!EOJ

 The Warehouse script resides in a file called

ARCSCR in the DATA group in the PROD account. If
you do not specify otherwise through the use of the
REPORT file type, all Warehouse output appears in
the $STDLIST.

Building Archive Files
Before Archiving

Many customers do not want to archive to tape, but
want to archive to disc. If you are one of these

30 Chapter Three/Platform Specific Information 2/3/2005

HP3000

customers, Taurus suggests building the archive
file ahead of time. The reason for this is that if the
system goes down before Warehouse has had the
chance to write out the first block of data, the data
will be lost. If the file exists prior to the archive
process beginning, Warehouse will begin posting
data immediately. If you need help determining
how big to make your archive file, please call
customer support and we will be glad to help with
this. There is a discussion on estimating the size of
the archive files in the next chapter, Warehouse
Scripts.

Printing reports on
the HP3000

When printing on the HP3000, you need to OPEN a
REPORT file using the OPEN statement. The OPEN
statement should use the CCTL option. You should
also generate a file equation using CCTL to get
proper page pagination. For example:

 :file rptfil;dev=lp;cctl

:wh.whii.taurus
1> open rep report *rptfil cctl

 For more technical information regarding this file

type, see the Warehouse Technical Manual. For
examples of scripts using REPORT files, see the
chapter entitled Warehouse Script Examples, in
this manual.

Warehouse abnormal
termination within a
job stream

Warehouse always prints statistics at the end of a
Warehouse execution regardless of whether the
Warehouse execution is successful. However,
Warehouse does change JCW to FATAL. You should
be checking this JCW in your job streams before
proceeding to the next step.

Data Structures
Supported on
HP3000

Warehouse supports the following data structures
on the HP3000: IMAGE, Allbase, Oracle, fixed
length flat files and fixed length text files. Some
general information about the support of each of
these structures:

2/3/2005 Chapter Three/Platform Specific Information 31

HP3000

 • All file structure support is detailed in the File

Types chapter in the Warehouse Reference
Manual.

 • For the most part all data file types are fully
supported and supported at the intrinsic or API
level.

 • When adding, deleting, or updating data you
must follow the rules required by the data file
structure, e.g. IMAGE requires that before
adding detail data that the associated manual
master information must exist.

 • Any logging or disaster recovery for the
database or data file is your responsibility. If
the subsystem has logging or IRL enabled,
Warehouse's transactions will be logged.

 • All critical data file errors cause Warehouse to
terminate, e.g. data base corruption.

 • All non-critical data file errors are reported by
Warehouse.

IMAGE Warehouse uses standard IMAGE intrinsics to

access IMAGE. No privilege mode programming
techniques are used to access IMAGE. By using
this strategy in supporting IMAGE, Warehouse is
fairly impervious to release changes of the
operating system.

 Warehouse honors the rules of adding, deleting or

updating data in an IMAGE database. This means
when deleting information from a master dataset
all of the data in the associated detail datasets
must be deleted first. This also means when
adding data to a detail dataset that has manual
masters associated with it, you must have the
entries in the manual masters first. Details which
have associated automatic masters add the data in
the automatic master automatically whenever you
add data into the detail dataset.

 When you open an IMAGE database, Warehouse

opens it using the mode and password you provide
in the open statement. The password that you
choose controls the data that you are able to access

32 Chapter Three/Platform Specific Information 2/3/2005

HP3000

in the IMAGE database. You should choose the
mode compatible with the other processes that are
accessing that database. For more information
regarding mode compatibility, see the
TurboIMAGE Reference Manual. If you do not
specify a group or account, Warehouse looks in your
logon group and account. Warehouse honors file
equations. However for understandability, it is
preferable to fully qualify the database name in the
script.

 Warehouse supports dataset, database, and item

level locking. The locking mode that you choose
should be compatible with the other processes that
are accessing that database. If you are accessing
multiple databases, use your locking conventions to
ensure that you do not cause a deadlock situation
to occur. How to turn specific locking options on
and off is covered in the Data File Types chapter
in the Warehouse Reference Manual.

Oracle Warehouse uses standard API to access Oracle. No

special modes or programming techniques are used
to access Oracle. By using this strategy in
supporting Oracle, Warehouse is fairly impervious
to release changes of the operating system and
Oracle releases.

 To access an Oracle database using Warehouse, you

must first set your Oracle SID and home system
variables. This tells Warehouse which instance you
are interested in and where Warehouse can find
the database.

 In the open statement, you provide Warehouse with

a user and password. This user/password
combination controls the security surrounding the
different tables/column combinations. Warehouse
provides you access only to those table/column
combinations that your user/password security
allows.

 Warehouse honors any "rules" set out by the SQL

2/3/2005 Chapter Three/Platform Specific Information 33

HP3000

create statements used to create this database. If
columns are NOT NULL or of a specific type,
Warehouse ensures that these rules are followed.
If any errors occur during the insert, Warehouse
reports the error.

Allbase Warehouse uses SQL to access Allbase. No special

modes or programming techniques are used to
access Allbase. By using this strategy in
supporting Allbase, Warehouse is fairly impervious
to release changes of the operating system and
Allbase releases. As HP allows various releases of
Allbase to run on the same operating system
release, Warehouse is available for each of the
releases. If you have questions as to which version
you should be running, please call customer
support at 650/482-2022 x2 or contact them via
email: support@taurus.com.

 HP only allows the access of one environment file

per session. Warehouse allows you to access one in
the session, plus any number of "remote"
environment files. For more information about this
either contact customer support or see the
documentation on Warehouse server in the
Warehouse Reference Manual.

 Warehouse honors any "rules" set out by the SQL

create statements used to create this database. If
columns are NOT NULL or of a specific type,
Warehouse ensures that these rules are followed.
If any errors occur during the insert, Warehouse
reports the errors.

34 Chapter Three/Platform Specific Information 2/3/2005

mailto:support@taurus.com

Unix

Unix Warehouse runs on a number of unix platforms and

forward. Software is delivered on a tape in tar
format. The installation process creates the
TAURUS directory and restores the Warehouse
software and its support files into that directory.
For more specific installation instructions, please
see the Warehouse Reference Manual.

Running
Warehouse on Unix

To run Warehouse:

 ./taurus/whii/warehouse

Outputting to Tape on
Unix

To write to tape, output the archive to the device
desired.

Printing reports on
Unix

When printing on the Unix, you need to OPEN a
REPORT file using the OPEN statement. For
example:

 ./taurus/whii/warehouse

1> open rep report rptfil

 Once the file has been created, use lp to print it.

For more technical information regarding this file
type, see the Warehouse Reference Manual. For
examples of scripts using REPORT files, see the
chapter entitled Warehouse Script Examples, in
this manual.

Data Structures
Supported on Unix

Warehouse supports the following data structures
on the HP9000: Archive, Oracle, comma separated
value (CSV) files, fixed length flat files and fixed
length text files. Some general information about
the support of each of these structures:

 • All file structure support is detailed in the File

Types chapter in the Warehouse Reference
Manual.

2/3/2005 Chapter Three/Platform Specific Information 35

Unix

 • For the most part all data file types are fully

supported and supported at the intrinsic or API
level.

 • All critical data file errors cause Warehouse to
terminate, e.g. data base corruption.

 • All non-critical data file errors are reported by
Warehouse.

Oracle Warehouse uses standard API to access Oracle. No

special modes or programming techniques are used
to access Oracle. By using this strategy in
supporting Oracle, Warehouse is fairly impervious
to release changes of the operating system and
Oracle releases.

 To access an Oracle database using Warehouse, you

must first set your Oracle SID and home system
variables. This tells Warehouse which instance you
are interested in and where Warehouse can find
the database.

 In the open statement, you provide Warehouse with

a user and password. This user/password
combination controls the security surrounding the
different tables/column combinations. Warehouse
provides you access only to those table/column
combinations that your user/password security
allows.

 Warehouse honors any "rules" set out by the SQL

create statements used to create this database. If
columns are NOT NULL or of a specific type,
Warehouse ensures that these rules are followed.
If any errors occur during the insert, Warehouse
reports the error.

36 Chapter Three/Platform Specific Information 2/3/2005

Windows

Windows Server Software is delivered on a diskette and restored

using the file SETUP.EXE. The installation process
restores the software and its files into
C:\Program Files\Taurus\Warehouse. For
more specific installation instructions, please see
the installation instructions located in the
Warehouse Reference Manual.

Running
Warehouse on
Windows

To run Warehouse, double click on the Warehouse
icon. Or for more control, run Warehouse in a
command prompt.

Printing reports on
Windows NT

When printing on the Windows, you need to OPEN a
REPORT file using the OPEN statement. For
example:

 C:\>\Program Files\Taurus\WH MYSCRIPT.WH

1> open rep report rptfil.txt

 Once the file has been created, you can use your

standard printing methods to print it, e.g. right
click on your .txt file that created. For more
technical information regarding this file type, see
the Warehouse Reference Manual. For examples of
scripts using REPORT files, see the chapter entitled
Warehouse Script Examples, in this manual.

Data Structures
Supported on
Windows NT

Warehouse supports the following data structures
on the Windows: Archive, SQL Server (ODBC),
Oracle, ODBC level-2 compliant files, comma
separated value (CSV) files, XML, fixed length flat
files and fixed length text files. Some general
information about the support of each of these
structures:

 • All file structure support is detailed in the File

Types chapter in the Warehouse Reference
Manual.

 • For the most part all data file types are fully
supported and supported at the intrinsic or API

2/3/2005 Chapter Three/Platform Specific Information 37

Windows

level.
 • All critical data file errors cause Warehouse to

terminate, e.g. data base corruption.
 • All non-critical data file errors are reported by

Warehouse.

ODBC No special modes or programming techniques are

used to access SQL Server. By using this strategy
in supporting SQL Server, Warehouse is fairly
impervious to release changes of the operating
system and SQL Server releases.

 In the open statement, you provide Warehouse with

user/password information. This password
combination controls the security surrounding the
different tables/column combinations. Warehouse
provides you access only to those table/column
combinations that your user/password security
allows.

 Warehouse honors any "rules" set out by the

database definition used to create this database.

ORACLE No special modes or programming techniques are

used to access Oracle. By using this strategy in
supporting Oracle, Warehouse is fairly impervious
to release changes of the operating system and
Oracle releases.

 In the open statement, you provide Warehouse with

Oracle user/password, Oracle home, and SID
information. This password combination controls
the security surrounding the different
tables/column combinations. Warehouse provides
you access only to those table/column combinations
that your user/password security allows.

 Warehouse honors any "rules" set out by the

database definition used to create this database.

38 Chapter Three/Platform Specific Information 2/3/2005

Warehouse Script Examples

Introduction This chapter is here to help you understand the

various facets of the Warehouse scripting language
as it applies to the various data movement projects.
This chapter is broken into sections with the
examples grouped by movement types. The
techniques illustrated in a movement type can be
applied to any of the uses that you can imagine
that fall within that movement type. Please don't
let our lack of imagination interfere with your uses
of Warehouse.

 For example, the movement type of "database to

database", could include a test database example,
or moving historical data from the production
database to the historical database or even include
moving data from a legacy database into a data
warehouse database.

 Don't let your mind limit your understanding of the

product by viewing the example for only one
application.

2/3/2005 Chapter Four/Warehouse Script Examples 39

Database to Database Examples

Script Type Archiving to an online historical environment in an

IMAGE environment.

Applicability IMAGE to IMAGE example. IMAGE requires that

manual master datasets must exist before you can
add data to the attached detail datasets.

Technique
Illustrated

Illustrates a technique used in populating a
historical or test database. A detail dataset is tied
to manual masters. This example illustrates how
to populate the manual masters prior to adding to
the detail dataset.

Background The user wishes to extract information from a

production database which has the structure
illustrated below. The problem is TurboIMAGE
does not allow information to be written to the
detail dataset until both chain heads are in place,
i.e., data must exist in both manual masters.

M1
(manual
master)

M2

D (detail)

(manual
master)

Script Explanation The technique to handle this data structure is to

read the detail dataset twice. The first read is used
to establish the path to the second master dataset.
Once the path is established, the second master's
information can be copied to the test database. The
second time Warehouse reads the detail dataset is
to add the detail information to the output detail
dataset. Please note that no deletions are done in

2/3/2005 Chapter Four/Warehouse Script Examples 41

Database to Database Examples

this script.

 1> OPEN PROD IMAGE PRODDB
 2> OPEN HIST IMAGE HISTDB &
 3> PASS=PASS MODE=3
 4> READ leftmstr = PROD. M1 &
 5> FOR item = 1
 6> COPY leftmstr TO HIST.M1
 7> READ DETAIL = PROD.D &
 8> FOR M1-KEY = leftmstr.M1-KEY
 9> READ rightmstr = PROD.M2 &
 10> FOR M2-KEY = DETAIL.M2-KEY
 11> COPY rightmstr TO HIST.M2
 12> ENDREAD
 13> ENDREAD
 14> READ REREAD = PROD.D &
 15> FOR M1-KEY = leftmstr.M1-KEY
 16> COPY REREAD TO HIST.D
 17> ENDREAD
 18> ENDREAD
 19> GO

 Line 1 opens the IMAGE database PRODDB in the

logon group and account using a default password
of ; and the default open mode of 5. The database
is tagged PROD.

 Lines 2 and 3 open the IMAGE database HISTDB in

the logon group and account using the password
PASS and the open mode of 3. The database is
tagged HIST.

 Lines 4 and 5 read the M1 dataset in the database

tagged PRODDB for data item item having the value
of 1. This read loop is tagged leftmstr.

 Line 6 copies the selected record to the M1 dataset

in the database tagged HIST. Notice that you
always use the tag name when using the COPY,
UPDATE, and DELETE statements.

 In lines 7 and 8, the read loop tagged DETAIL,

reads the dataset D in the database tagged PROD,
matching on the key previously found in the read
loop tagged leftmstr.

 In lines 9 and 10, the read loop tagged rightmstr,

reads the dataset M2 in the database tagged PROD,

42 Chapter Four/Warehouse Script Examples 2/3/2005

Database to Database Examples

matching on the key previously found in the read
loop tagged DETAIL.

 Line 11 copies the selected record to the dataset M2

in the database tagged HIST.

 Line 12 terminates the rightmstr read loop.

 Line 13 terminates the DETAIL read loop.

 In lines 14 and 15, the read loop tagged REREAD,

reads the dataset D in the database tagged PROD
matching on the key from the read loop tagged
leftmstr.

 In line 16, Warehouse copies the selected record to

the D dataset in the database tagged HIST.

 Line 17 terminates the REREAD read loop.

 Line 18 terminates the leftmstr read loop.

Comments The technique can be used any number of times in

the construction of a history or test database. Note:
This technique is not necessary if the master
datasets are automatic masters.

2/3/2005 Chapter Four/Warehouse Script Examples 43

Database to Database Examples

Script Type Moving multiple source databases to a similar online

historical environment.

Technique
Illustrated

Multiple source files to multiple target files. This
technique could be applied regardless of data
structure or data movement use. IMAGE to IMAGE.

Background A school has two sets of databases:
 • Student database which contains contact and

demographic information.
 • School year database which contains grade and

attendance information.

 Due to state funding, the school must be able to go

back to a particular year's roster and provide
attendance and student information for any dates
within that year. In order to satisfy this requirement,
the school has decided to create a historical database
for each of the school years which reflects that year's
activities.

 So as we review the script, the technique being

illustrated is how to link two data sources together in
a script and copy them to two target databases. In
this script look for the use of a report file and file
equations.

Script Explanation 1> open prodstu allbase stue

 2> open allyr image semstr &

 3> pass=WRITE mode=1

 4> open srpt report sturpt cctl

 5> open yr1993 image yr1993 &

 6> pass=; mode=3

 7>

 8> header [srpt] $center, &

 9> "Students Transfer to Historical DB"

 10> header [srpt]

 11> header [srpt]

 12>

 13> read schyr = prodstu.prod.year for &

44 Chapter Four/Warehouse Script Examples 2/3/2005

Database to Database Examples

 14> year = "1993"

 15> copy schyr to prodstu.hist.year

 16> read student = prodstu.prod.stum &

 17> for school = schyr.school

 18> copy student to prodstu.hist.stum

 19> print [srpt], school, student_no,

 20> print [srpt], first_name,

 21> print [srpt] last_name

 22> read stud = prodstu.prod.stud &

 23> for student_no = &

 24> student.student_no

 25> copy stud to prodstu.hist.stud

 26> delete stud

 27> endread

 28> read grade = allyr.grades for &

 29> student-no = student.student_no

 30> copy grade to yr1993.grades

 31> delete grade

 32> endread

 33> read attend = allyr.attend &

 34> for student-no = &

 35> student.student_no

 36> copy attend to yr1993.attend

 37> delete attend

 38> endread

 39> delete student

 40> endread

 41> endread

 Line 1 opens the Allbase environment stue in the

logon group and account. This database is tagged
prodstu.

 Lines 2 and 3 open the IMAGE database semstr

using a password of WRITE and the database open
mode of 1. This database is tagged allyr.

 Line 4 opens a report file named sturpt indicating

that carriage control should be used. This report file
is tagged srpt. If this script is running on an
HP3000, a file equation needs to be present to point
sturpt to the right print device and indicating that
the file has carriage control, e.g. :FILE
STURPT;DEV=LP;CCTL.

2/3/2005 Chapter Four/Warehouse Script Examples 45

Database to Database Examples

 Lines 5 and 6 open the IMAGE database being used

as the historical database named yr1993 in the logon
group and account using the password of ; and the
open mode of 3. The database is tagged as yr1993.

 Line 7 is a blank line.

 Lines 8 and 9 define a header line to be printed at the

top of every page on the report srpt. The text within
the quotation marks is centered on the line. Note
that you are able to have an unlimited number of
report files. This means you could generate a report
of all that was archived and a report of those records
which didn't meet the selection criteria.

 Line 10 generates a blank header line on the srpt

report.

 Line 11 generates another blank header line on the

srpt report.

 Line 12 is a blank line.

 Lines 13 and 14 define the read loop tagged schyr

which reads the table prod.year in the database
tagged prodstu for records with the value 1993 in
the field year.

 Line 15 copies the selected record to the history table

hist.year in the database tagged prodstu.

 Lines 16 and 17 define the read loop tagged student

which reads the table prod.stum in the database
tagged prodstu for the corresponding records in this
table matching on the school found in the previous
read loop.

 Line 18 copies the selected record to the history table

hist.stum in the database tagged prodstu.

 Line 19 generates a print line for the report srpt

containing the fields school, and student_no.
Notice the comma at the end of the line. This means

46 Chapter Four/Warehouse Script Examples 2/3/2005

Database to Database Examples

that the definition of this print line is going to be
continued in the next PRINT statement.

 Line 20 continues the print line for the report srpt

started in line 19 and adds the field first_name to
the print line.

 Line 21 continues the print line for the report srpt

started in line 19 and adds the field last_name.

 Lines 22, 23, and 24 define a read loop tagged stud

which reads the table prod.stud in the database
tagged prodstu matching on the student_no found
in the read loop tagged student.

 Line 25 copies the selected record to the history table

hist.stud in the database tagged prodstu.

 Line 26 deletes the selected record.

 Line 27 terminates the read loop tagged stud.

 Lines 28 and 29 define a read loop tagged grade

which reads the dataset grades in the database
tagged allyr matching on the student_no found in
the read loop tagged student.

 Line 30 copies the selected record to the grades

dataset in the database tagged yr1993.

 Line 31 deletes the selected record.

 Line 32 terminates the read loop tagged grade.

 Lines 33, 34 and 35 define a read loop tagged attend

which reads the dataset attend in the database
tagged allyear matching on the student_no found
in the read loop tagged student.

 Line 36 copies the selected record to the dataset

attend in the database tagged yr1993.

 Line 37 deletes the selected record.

2/3/2005 Chapter Four/Warehouse Script Examples 47

Database to Database Examples

 Line 38 terminates the read loop tagged attend.

 Line 39 deletes the selected record in the read loop

tagged student. This delete is done here because the
record is needed to make the linkages to the related
tables and sets. After all the associated information
is deleted, we can delete the student.

 Line 40 terminates the read loop tagged student.

 Line 41 terminates the read loop tagged schyr.

Comments This example showed the user moving data from a

production environment to a historical environment.
If you look past the specifics of this example, the
techniques illustrated could be used in any database
transfer project including: creating test databases,
data conversion projects, or even a data warehouse
project. So as we review the concepts illustrated, keep
this in mind.

 Two important concepts introduced in this script are

Warehouse's capability to link multiple tables within
the same database and the ability to make linkages to
other databases or files. The linkages are made using
indented read statements (a read statement which
appears before its predecessor's endread) and through
the FOR clause of the READ statement. The FOR
clause describes the relationship. For example, FOR
STUDENT-NO = READTAG.DATAITEM. In this
example, STUDENT-NO is a data item in the table or
dataset that is being read in this read loop. The
information to the left of the equal sign refers to the
data item that you wish to match on from a previous
read loop. Warehouse doesn't care whether the
linkage is a physical linkage as you would see in a
master detail relationship in IMAGE or a logical
relationship as a link from one file to another.

 Warehouse allows the use of functions and

expressions in the FOR clause of the READ statement.
So if it were necessary to select pieces of two items
and concatenate them together to make a linkage, you

48 Chapter Four/Warehouse Script Examples 2/3/2005

Database to Database Examples

could do that. For more information regarding
Warehouse expressions, see the chapter entitled
Expressions, in the Warehouse Reference Manual.

 The next important concept introduced in this script

is the use of report files. Report files are opened via
the OPEN statement and then written to via the
HEADER or PRINT statements. Each of these
statements must refer to the report file to be written
to. If no report file is specified, the PRINT or HEADER
output is sent to the job's $STDLIST. The size of the
report file is determined by the SET statement.

 The last point is just a hint or tip. Notice that this

script doesn't have a GO statement in it. With no GO
in the script, Warehouse simply reviews the scripts
and reports any syntax errors but does not process
any data. This can be handy for debugging the syntax
portion without having to worry about processing any
data.

2/3/2005 Chapter Four/Warehouse Script Examples 49

Database to Database Examples

Script Type Creating a summarized historical data file.

Applicability Summarization techniques. Could be used

database to database or mixed files.

Technique
Illustrated

Creating summarized data from detail
transactions. Flat file to Oracle database.

Background The company has detail transactions in a flat file

and wants to create a historical database which
contains just one record for each time we switch
account or quarter. So assume the data source
looks like:

 Acct # Qtr# Amt TxDate

1 1 5.00 1/1/91
1 1 1.00 2/1/91
1 1 4.00 3/1/91
1 2 10.00 4/1/91
2 1 5.00 2/1/91
2 3 5.00 9/11/91
2 3 5.00 9/17/91
2 4 10.00 12/1/91

•
•
•

 In our summarized file, we would like to write:

 Acct # Qtr# Amt TxDate

1 1 10.00
1 2 10.00
2 1 5.00
2 3 10.00
2 4 10.00

 The key technique in this example is sorting a file

and then writing records out which contain
summarized information at those sort breaks. So,
in the script below, look for the order by, which
accomplishes the sort and copy of a record variable

50 Chapter Four/Warehouse Script Examples 2/3/2005

Database to Database Examples

instead of copying directly from the input source.

Script Explanation 1> open transd fixed transd

 2> open sum oracle scott/tiger

 3>

 4> format transf: record

 1 ->acct-no : image x(10)

 11->qtr-no : image x(1)

 12->amt : image i1

 14->tx-date : image z(8)

 22->comment : image x(40)

 62->end

 11>

 12> define sumrec : using sum.summary

 13> ***Variables for checking for sort

 14> *** break

 15> define old-qtr : x(1)

 16> define old-acct : x(10)

 17>

 18> define total-amt : i2

 19>

 20> * Initialize variables

 21> setvar old-qtr = " "

 22> setvar old-acct = " "

 23> setvar total-amt = 0

 24>

 25> read tx = transd format transf &

 26> order by acct, tx-date, qtr-no

 27>

 28> if qtr <> old-qtr or &

 29> acct-no <> old-acct THEN

 30> if acct-no <> " " then

 31> setvar sumrec.amt = total-amt

 32> setvar sumrec.comment = &

 33> '@sum record'

 34> setvar sumrec.acct-no &

 35> = old-acct

 36> setvar sumrec.txdate = &

 37> = tx-date

 38> setvar sumrec.qtr = old-qtr

 39> copy sumrec to sum.summary

 40> setvar total-amt = 0

 41> endif

2/3/2005 Chapter Four/Warehouse Script Examples 51

Database to Database Examples

 42> setvar old-acct = acct-no

 43> setvar old-qtr = qtr-no

 44> endif

 45> setvar total-amt = total-amt + amt

 46> endread

 47> if old-qtr <> 0 then

 48> setvar sumrec.amt = total-amt

 49> setvar sumrec.comment = &

 50> @Sum record"

 51> setvar sumrec.acct-no &

 52> = old-acct

 53> setvar sumrec.txdate = &

 54> = tx-date

 55> setvar sumrec.qtr = old-qtr

 56> copy sumrec to sum.summary

 57> endif

 58> go

 Line 1 opens a fixed length flat file transd. The

file is tagged transd. Two type of flat files can be
used: TEXT and FIXED. TEXT files are to be used
only when no numeric data exists in the file. If
your file contains numeric data, use FIXED.

 Line 2 opens the Oracle database using predefined

variable values contained in Oracle home and SID
variables. When the database is opened, you will
be given access to the tables allowed access by the
user and password supplied in your open
statement.

 Line 4 defines a format tagged transf. This

record format defines how each of the various
elements are read from the flat file. The definition
of a format statement ends with an end. Notice
that record definition shows the beginning of each
field, e.g. the field qtr-no begins at position 11.

 Line 12 defines a record variable, sumrec, which

has the same layout as the summary table in the
database tagged sum.

 Lines 13 and 14 are comments. A comment is

denoted by a * in column one.

52 Chapter Four/Warehouse Script Examples 2/3/2005

Database to Database Examples

 Lines 15, 16, and 18 define local variables.

 Lines 21, 22 and 23 initialize our variables.

 Lines 25 and 26 read the transaction flat file,

transd, using the format tagged transf. Notice
that file is ordered by (sorted) by acct, tx-date,
and qtr-no.

 Lines 27 and 28 check to see if the account number

or the quarter is not equal to our old account
number or old quarter, if so lines from the THEN to
the corresponding ENDIF are executed. If not, the
logic is picked up after the ENDIF.

 In line 30, Warehouse checks to see if the account

number is not equal to spaces, and if so lines 31
through 41 are executed.

 Lines 31 through 38 build the summary record

from pieces of the transaction record.

 Line 39 copies the summary record in the record

variable tagged sumrec to the summary table in
the database tagged sum.

 Line 40 resets the total-amt variable back to

zero.

 Line 41 terminates the IF block.

 Lines 42 and 43 set the old account number and old

quarter to our current record.

 Line 44 terminates the IF block.

 Line 45 adds the current amount into the total

amount field.

 Line 46 terminates the tx read loop.

 Line 47 checks if the qtr-no is not equal to zero.

If it isn't, it executes the code within the block.

2/3/2005 Chapter Four/Warehouse Script Examples 53

Database to Database Examples

 Lines 48 through 55 set the values in our summary

records.

 Line 56 copies the local variable, sum-rec, to our

Oracle table, summary.

 Line 57 terminates the IF block.

 Line 58 begins the execution of the script. Please

note that no processing of any data will happen
unless there is a GO statement in your script. You
can do syntax checking on your script by simply
eliminating the GO.

Comments Two important concepts were introduced in this

script: using a local record variable to construct
the data before writing it out to the database and
sorting the file to induce breaking points.

 Using a local record variable is very valuable in the

following situations: where information has to be
accumulated before writing the record out, where
the information resides in multiple source tables, or
where a single source table needs to populate
multiple target tables.

 Sorting a file with the ORDER by clause can also be

used for printing a sorted report. The first item
after the ORDER by is the highest sort item. The
default sort order is ascending unless otherwise
noted with DESC.

 This example, as with all "archiving to historical

environment" examples, illustrate techniques that
could be used in migration, data warehousing, or
even creating decision support environments.

54 Chapter Four/Warehouse Script Examples 2/3/2005

Database to Database Examples

Script Type Incremental loading of historical database.

Applicability Could be used for test environments or data

warehouses.

Technique
Illustrated

Checking the target first to ensure that data
doesn't already exist before copying the data over.
IMAGE to IMAGE.

Background The company has a number of code and description

datasets. When they copy historical information
over to the historical environment, they only want
to select any new tax codes that may have been
added since their last move. To accomplish this
they read the entire source table and then check
the target table to see if it already exists, if it
doesn't exist they want to add a new table entry.

Script Explanation The technique that is being illustrated is reading

the target file and setting a switch if a record is
found. In this example, Warehouse reads and
writes to the "output" file, hist.

 1> open prod image prod pass=W mode=1

 2> open hist image hist pass=W mode=3

 3>

 4> define copy : x(3)

 5> read tax = prod.tax

 6> setvar copy = "YES"

 7> read outtax = hist.tax for &

 8> tax-code = tax.tax-code

 9> setvar copy = "NO"

 10> endread

 11> if copy = "YES" then

 12> copy tax to hist.tax

 13> endif

 14> endread

 Line 1 opens our source database, PROD, which is

2/3/2005 Chapter Four/Warehouse Script Examples 55

Database to Database Examples

an IMAGE database. The database is tagged PROD.

 Line 2 opens our target database, HIST, which is

also an IMAGE database. The database is tagged
HIST.

 Line 4 defines a local variable, COPY, and defines it

as an IMAGE X type 3 characters long. Notice, this
wouldn't be allowed in IMAGE, but as a local
variable we do not have to follow the rules outlined
by IMAGE.

 In the read loop tagged, tax, defined in line 5,

Warehouse reads the tax dataset from the
database tagged PROD.

 In line 6, the copy switch is set to YES.

 In lines 7 and 8, Warehouse reads the tax dataset

in the target database, HIST, for the same tax code.
If the read succeeds, Warehouse executes the code
within the read loop, i.e. sets the switch in line 9.
Line 10 terminates the read loop tagged outtax. If
the read fails, the value of the COPY switch remains
set to YES.

 In line 10, we check if the switch, COPY, indicates if

Warehouse should copy the record to the target
database. If COPY is still set to YES, then in line 11,
Warehouse copies the record to the dataset tax in
the database tagged, HIST. Line 12 terminates the
IF block.

 Line 13 terminates the tax read loop.

Comments The technique introduced in this example, has a

number of different applications. Checking the
target can be useful so that you don't duplicate
data when bringing data back from an archive file
or when copying data from the production
environment to a test environment.

56 Chapter Four/Warehouse Script Examples 2/3/2005

Database to Database Examples

 This example, as with all "archiving to historical

environment" examples, illustrate techniques that
could be used in migration, data warehousing, or
even creating decision support environments.

2/3/2005 Chapter Four/Warehouse Script Examples 57

Database to Database Examples

Script Type Script designed to be able to be restarted.

Applicability Universal, but assumes that it is running on

HP3000.

Technique
Illustrated

Building an archiving procedure that can be
stopped and started without compromising the
integrity of the logically related data. Allbase to
Oracle.

Background The customer has very large databases and very

large archives (millions of records). Due to the type
of business they are in, they need to have their
databases available most of the day. The customer
would like to be able to start and stop the archive
process, but have it complete a full transaction
before stopping.

 In the example below, we see Warehouse

continuing its execution of the script until a file
appears. On the output block, A, Warehouse
checks to see if a "stop" file, stopfile, has
appeared. If the file has appeared, processing stops
on the next read of the outer block. So to stop the
archive, simply build the file.

Script Explanation 1> OPEN PART Allbase PARTSDBE

 2> OPEN PARTARC ORACLE SCOTT/TIGER

 3>

 4> DEFINE FLAG : I1

 5> SETVAR FLAG = 1

 6>

 7> READ A = PART.MANUFDB.PARTS &

 8> FOR STATUS = "I" AND FLAG <> 0

 9> COPY A TO PARTARC.PARTS

 10> SETVAR FLAG = &

 11> SYSTEM("LISTF STOPFILE >$NULL")

 12> ENDREAD

 13> IF FLAG = 0

 14> PRINT "***Run aborted by",

58 Chapter Four/Warehouse Script Examples 2/3/2005

Database to Database Examples

 15> PRINT "STOPFILE***"

 16> ENDIF

 17> GO

The Allbase environment PARTSDBE is opened in
line 1. This file is tagged PART.

 Line 2 Warehouse opens the Oracle database using

the user id, SCOTT, and the password, TIGER. The
database is tagged PARTARC.

 Lines 4 and 5 define a local variable, FLAG, and

initialize it.

 In lines 7 and 8, in the read loop tagged, A, the

table MANUFDB.PARTS in database tagged PART is
read for those records with the value of I in the
column STATUS and for the local variable FLAG not
having a value of zero.

 Line 9 copies those records selected in the read loop

tagged A to the PARTS table in the database tagged
PARTSARC.

 Lines 10 and 11 set the value of flag to the results

of the LISTF. If the file is there, the value will be
zero. If the file is not there, the LISTF fails and
the returned value is not there.

 Line 12 terminates the A loop.

 Line 13 checks if the flag is zero.

 If the flag was set to zero, lines 14 and 15 print a

single print line which says ***Run aborted by
STOPFILE***. Notice at the end of line 14, the
comma indicates that print line should be
continued beyond one line.

 Line 16 terminates the IF block.

 Line 17 begins the execution of the script.

2/3/2005 Chapter Four/Warehouse Script Examples 59

Database to Database Examples

Comments Warehouse has the capability to interact with the

system it is being run on. The use of system
variables to pass values for selection into the script
is common. This script however, is using another
technique to allow the user more control over the
beginning and ending of the script.

 The reasons for wanting to start and stop may be

that there is limited time to archive. When
archiving to a historical environment, you can
begin and stop.

 This technique could be used in a data conversion

or migration projects.

60 Chapter Four/Warehouse Script Examples 2/3/2005

Database to Database Examples

Script Type Flat file used as selection for archival process.

Applicability Using a flat file to drive a Warehouse process is a

common technique. This technique could be used in
creating test environments, creating data warehouse
or simple data movement as in EDI. Flat file and
IMAGE to IMAGE.

Technique
Illustrated

Illustrates using a flat file to drive an archive
process. The flat file contains key values of those
records which have been qualified for archiving.
This flat file could have been created by another
process or program such as SUPRTOOL or SQL.
This technique is also useful for creating a test
database containing a predetermined list of records.

Background The application software package that the user has

installed uses a two-step process to delete customers.
The end user indicates via a transaction screen those
customers they wish to delete. The result of this
transaction is a transaction log file which contains
the customer number of those customers "tagged" to
be deleted. That night, a batch job runs and deletes
the customer and their corresponding orders from
the database.

The problem is the end user would prefer that the
customers be moved into a history database instead
of being deleted.

The structure of the database is the same as the one
described in our first example and is detailed below.

2/3/2005 Chapter Four/Warehouse Script Examples 61

Database to Database Examples

Problem #1

CUSTOMERS
(Key = CUST-NO)

ORDERS

 The ideal solution would be to use the transaction

file, which contains the customer to be "archived", as
our driver file. The script below uses the driver file
technique.

Script Explanation 1> OPEN CUTS IMAGE "CUST PASS 1"

 2> OPEN DRIVER FIXED DRIVER

 3> OPEN HIST IMAGE CUSTH &

 4> pass=PASS mode=1

 5> FORMAT RECORD FLAT_FMT

 1-> CUST-NO : X12

 13-> END

 8> HEADER "OE0900J", $TAB 120, $PAGENO

 9> HEADER $CENTER, "Order Entry"

10> HEADER $CENTER, "Customer Archival"

 11> HEADER $CENTER, $TODAY

 12> HEADER

 13> READ CUST-NUMBERS = DRIVER &

 14> FORMAT FLAT_FMT

 15> READ CUST-IN-DB = CUST.CUSTOMERS &

 16> FOR CUST-NO = &

 17> CUST-NUMBERS.CUST-NO

 18> COPY CUST-IN-DB TO HIST.CUSTOMERS

 19> PRINT "Customer:",CUST-NO

 20> READ O = CUST.ORDERS FOR &

 21> CUST-NO = CUST-IN-DB.CUST-NO

 22> COPY O TO HIST.ORDERS

62 Chapter Four/Warehouse Script Examples 2/3/2005

Database to Database Examples

 23> PRINT $TAB 5,ORDER-NO,

 24> PRINT ORDER-DESC

 25> DELETE O

 26> ENDREAD

 27> DELETE CUST-IN-DB

 28> ENDREAD

 29> ENDREAD

 30> GO

 In line 1, Warehouse opens the IMAGE CUST

database using mode 1 and the password PASS and
tags it CUST. In line 2, Warehouse opens the fixed
file DRIVER and tags it DRIVER. In lines 3, and 4,
Warehouse opens the IMAGE database HISTDB
using mode 1 and the password PASS and tags it
HIST.

 In line 5, the record definition of DRIVER is supplied

via the FORMAT statement. DRIVER contains the
CUST-NO field which contains 12 bytes of data. The
end indicates to Warehouse that you are done
defining fields in the format statement.

 In lines 8 through 12, the header which is printed on

the top of every page is defined. This header
statement doesn't belong to a particular report (i.e.
one defined using an open statement), but the
standard report which is printed with every
Warehouse run. Report headers are defined using
the HEADER statement. $TODAY contains the today's
date and $PAGENO contains the current page
number. Notice the use of $CENTER to center the
text on the page. A HEADER statement with no other
fields generates a blank line.

 The selection of records to be archived has already

taken place in the application package. Key values
of the selected records are contained in the file
DRIVER. All that is necessary is to read the contents
of the DRIVER file and archive based on the contents
of that file.

 In the read loop tagged, CUST-NUMBERS, on lines 13

and 14, Warehouse reads the file tagged DRIVER

2/3/2005 Chapter Four/Warehouse Script Examples 63

Database to Database Examples

serially using the format described in the FORMAT
tagged FLAT_FMT.

 In lines 15 through 17, the read loop tagged CUST-

IN-DB reads the CUSTOMERS dataset matching on
the CUST-NO in the CUST-NUMBERS read loop. In
line18, the selected customers are copied to the
CUSTOMERS dataset in the database tagged HIST.
Line 19 prints a line showing the customer number.

 Lines 20 and 21 define the read loop tagged O. In

this read loop, Warehouse reads the ORDERS dataset
in the database tagged CUST matching on the CUST-
NO in the read loop tagged CUST-IN-DB. In line 22,
the selected orders are copied to the ORDERS dataset
in the database tagged HIST. Notice that a report is
being generated during the archival process. The
report could be generated at a later time, but it is
easier to do it while the archival process is occurring.
In line 24, Warehouse deletes the order.

 Finally in line 27, Warehouse deletes the customer.

Comments A common problem is knowing when to use a format

statement and when to use a define statement.
The format statement simply describes the format
of existing data. The define statement creates a
local variable with the record layout that you
describe. So, if you need a place to keep data until
you are ready to write it out, use a define. If you
need to describe the layout of data that already
exists, use a format.

 Producing reports can be accomplished by either

using the standard output, like in this example, or by
using the OPEN statement and opening up a REPORT
type file. If you elect to use the OPEN statement
method, you can create as many reports as your
script requires. To write to a particular report, print
to that report tag, e.g. print [exprpt]
fieldname, field2. For more information on
using this method, see REPORT in the chapter
entitled, Data File Types in the Warehouse

64 Chapter Four/Warehouse Script Examples 2/3/2005

Database to Database Examples

Reference Manual under REPORT file type.

 Using the system constants, like $PAGENO and

$TODAY, can make life simpler. These constants are
described in the chapter Expressions in the
Warehouse Reference Manual. The dates can be
manipulated to be printed in different formats by
using the date functions also described in that same
chapter.

 The use of other files to drive a Warehouse script is

common. It is sometimes used as in this example,
because another process has already "pre-selected"
our data for us. Or maybe another process, like
SUPRTOOL, is faster, because of the data
structures, at selecting the key values for us to
process. Whatever the reason you choose to use a
driver file, Warehouse is able to integrate files from
other sources. This technique is applicable for all
types of projects.

2/3/2005 Chapter Four/Warehouse Script Examples 65

Database to Database Examples

Script Type Maintaining logical data structures when moving

from database to database.

Applicability Universal technique which could be used in test

environments, data conversion or creation of
historical environments.

Technique
Illustrated

Creating a test environment where logical data
structures must be maintained as we move
information from the production environment to
the test environment. IMAGE to IMAGE.

Background This example illustrates how to maintain data

integrity when using a detail dataset as a pseudo
manual master. Sometimes it is useful to use a
detail dataset to store information which truly
belongs in a manual master dataset.

 For example, it may be useful to have several

automatic masters connected to order header
information. However, it is not possible to have the
order header information in a manual master
because IMAGE does not allow manual masters to
be associated with automatic masters. The
alternative is to put the order header information
in a detail dataset. However, the disadvantage to
using this technique is that the application is then
responsible for ensuring that one and only one
order header record exists per order.

 The following example creates a test database

using Warehouse with a data structure like this.
Warehouse must check to see if an order header
exists prior to adding an order header record.

 The data structure below is the structure used in

the solution presented.

66 Chapter Four/Warehouse Script Examples 2/3/2005

Database to Database Examples

 Order-Index

(A)

Order-Header
(D)

Order-Lines
(D)

1 record only
per order

many records
per order

 Notice that the detail dataset ORDER-HEADER is

acting as a pseudo master.

Script Explanation 1> OPEN ORD IMAGE ORDER pass=R mode=5

 2> OPEN TEST IMAGE TESTDB pass=W mode=3

 3> DEFINE COUNTER : I1

 4> DEFINE THERE : X1

 5> SETVAR COUNTER = 1

 6> READ OI = ORD.ORDER-INDEX &

 7> FOR COUNTER <= 1000

 8> READ OH = ORD.ORDER-HEADER &

 9> FOR ORDER-NO = OI.ORDER-NO

 10> SETVAR THERE = 'N'

 11> read chkoh = test.order-header &

 12> FOR ORDER-NO = OH.ORDER-NO &

 13> AND THERE = 'N'

 14> SETVAR THERE = 'Y'

 15> ENDREAD

 16> IF THERE = 'N' THEN

 17> COPY OH TO TEST.ORDER-HEADER

 18> READ LINES = ORD.ORDER-LINES &

 19> FOR ORDER-NO = &

 20> OI.ORDER-NO

 21> COPY LINES TO TEST.ORDER-LINES

 22> ENDREAD

 23> ENDIF

 24> ENDREAD

 25> SETVAR COUNTER = COUNTER + 1

 26> ENDREAD

 27> GO

2/3/2005 Chapter Four/Warehouse Script Examples 67

Database to Database Examples

 Warehouse opens the database ORDER using mode

5 and the password READ and tags it ORD in line 1.
Warehouse opens the database TESTDB using mode
3 and the password WRITE and tags it TEST in line
2.

 Next in line 3 the variable COUNTER is defined.

COUNTER is used to extract 1000 orders. COUNTER
is initialized to 1 in line 5. The variable THERE is
defined, in line 4, as a one character alphanumeric
field.

 The read loop tagged OI, defined in lines 6 and 7,

reads the automatic master dataset, ORDER-INDEX,
in the database tagged ORD for 1000 orders. By
reading the automatic master, Warehouse is able to
access the detail datasets by key value. This is
preferable to reading one of the detail sets serially
and then proceeding to the other datasets by key
value.

 The read loop tagged OH, defined in lines 9 and 10,

reads the ORDER-HEADER dataset in the database
tagged ORD matching on the ORDER-NO contained
in both datasets. The variable THERE is set to N in
line 10.

 In the read loop tagged CHECKOH, defined in lines

11 through 13, Warehouse reads from the target
file to ensure that we have only one order header
record. The read loop reads from the ORDER-
HEADER dataset in the database tagged TEST
matching on ORDER-NO from ORDER-NO in the read
loop tagged OH and checks that the value in the
variable is N. This technique of reading the target
file can be very handy in maintaining logical and
referential data integrity. If the a record is found,
Warehouse executes the statements within the
read loop which causes our switch to be changed to
Y. If no record is found, the switch's value remains
N.

 If the value of THERE is N then Warehouse copies

68 Chapter Four/Warehouse Script Examples 2/3/2005

Database to Database Examples

the selected OH records to the ORDER-HEADER
dataset in the database tagged TEST in line 17. In
the read loop tagged LINES defined in lines 18 and
19, the corresponding records in the dataset
ORDER-LINES in the database tagged ORD are read
and copied to the test database. The counter is
incremented and then the next order is processed
in line 25.

Comments Here is another example of checking the target file

before processing any further to decide what should
happen.

2/3/2005 Chapter Four/Warehouse Script Examples 69

Database to Database Examples

Script Type Checking records counts before moving data.

Applicability Checking data volumes is common when the

receiving target may need to be expanded.

Technique
Illustrated

Checking record counts prior to creating the test
environment. IMAGE example.

Background It is desirable to create test environments which

are a subset of the production environment. These
environments can be used for a number of reasons
including: duplicating problems, developing
enhancements, and training end users.

 Knowing that you want 10% percent of your

customers out of the order entry system for your
test environment doesn't give a good idea on how to
size your test environment.

 The following example shows how determine the

correct size of your test environment before copying
information into it.

Script Explanation 1> OPEN PROD IMAGE PROD pass=R mode=5

 2> read m = prod.m for selection = "Y"

 3> read d = prod.d for key = m.key

 4> endread

 5> endread

 6> go

 Warehouse opens the database PROD using mode 5
and the password READ and tags it PROD in line 1.

 The read loop tagged m, defined in line 2, reads the

records in the dataset m for the records that have Y
as the value in the data item selection.

 The indented read loop d, defined in line 3, reads

associated records in the dataset d.

70 Chapter Four/Warehouse Script Examples 2/3/2005

Database to Database Examples

 At the end of the execution of this script, statistics

are printed. The statistics tell you how many
records fulfilled your selection criteria for each of
the datasets read. Use these numbers to size your
test database.

Comments In environments were disc space is limited, this is a

handy technique to use only the space needed.

2/3/2005 Chapter Four/Warehouse Script Examples 71

Database to Database Examples

Script Type Handling data conversion issues including logical

data conversion changes.

Applicability Although this technique is more common in a data

conversion project, you might have a need for it in
creating test environments.

Technique
Illustrated

Conversion example. Illustrating data structure
conversion with the same data file type. IMAGE to
IMAGE.

Background Illustrates Warehouse's strong data conversion

features. In this particular example, the user is
converting from one application system to another.
The data being collected is, for the most part, the
same. The example illustrates how to deal with:
name mismatches, data type conversions, data
merging, and data mapping changes. This
technique can be used for any data movement
between the same or different file types. For this
example, we are moving data from one IMAGE
database to another with very different structural
attributes.

 The user is changing accounts payable systems and

wants to move the vendors in the old accounts
payable system to the new accounts payable
system. The two vendor datasets are depicted
below. The lines indicate the relationships between
the different data items in the each of the datasets.

72 Chapter Four/Warehouse Script Examples 2/3/2005

Database to Database Examples

 OLD

VENDOR, X6
ABC-CD, X2
ADDRESS-1, X30
ADDRESS-2, X30
ADDRESS-3, X30
AMT-PDYTD, J2
AMT-PURLY, J2
AMT-PURYTD, J2
AMT-TBAL, J2
AREACODE, J1
BUYER, X1
DATE-ADD, J1
DATE-LSTTXN, J2
DISC-AVAIL, J2
DISC-LOST, J2
DISC-TAKEN, J2
ACCOUNT-NO, X10
GL-DRACCT, X10
VENDOR-NAME, X32
NO-PURLY, J1
NO-PURYTD, J1
PHONE, J2
STATE, X2
STATUS, X2
TERMS, X8
TERMS2, X8
TERMS-NET, X8
ZIP-CODE, J2
GL-DISCACCT,X18
CODE, X2

VENDOR, X6
VENDOR-NAME, X30
VENDOR-ADDR-1, X30
VENDOR-ADDR-2, X30
CITY, X16
STATE, X2
ZIP-CODE, X10
VENDOR-COUNTRY, X16
PHONE-NO, X12
CONTACT, X20
TEMP-PERM-FLAG, X2
FED-ID-NO, Z10
FED-ID-TYPE, X2
CATEGORY-1099, X2
TYPE, X4
STATUS, X2
REMIT-VENDOR, X6
ACCOUNT-NO, X24
TERMS, X4
LAST-ACTIVITY-DT, Z6
PURCHASES-YTD, Z10
PURCHASES-LAST, Z10
BALANCE, Z10
AMT-PD-LAST, Z10
DISCOUNTS-YTD, Z10
POS-YTD, I2
•
•
•

NEW

 The key to understanding this example is

remembering how Warehouse handles structural
differences. Warehouse copies data based on item
name. Those items which have the same names
are handled automatically. This includes:

 • data mapping, i.e. change in the location of a
particular data item

 • data type conversion, e.g. an X field changing to
a Z field

 • data length changes, e.g. an I type field used to
be one character long and now it is defined as
an I2.

 Warehouse does not copy fields that do not have a
corresponding data item in the receiving dataset.
Warehouse initializes any data items which do not
have a match with either spaces or zeroes
depending on data type.

 Our script moves the old record into a record

variable. It then uses the setvar statement to
handle data items that do not have the same name.

2/3/2005 Chapter Four/Warehouse Script Examples 73

Database to Database Examples

It could also use variables to initialize new data
items with static values if that was necessary or
appropriate.

Script Explanation 1> OPEN OLD IMAGE OLDDB pass=R mode=5
 2> OPEN NEW IMAGE NEWDB pass=W mode=1
 3>

 4> DEFINE VEND : USING NEW.VEND
 5>
 6> READ V = OLD.VENDORS
 7> SETVAR VEND = V
 8> SETVAR VEND.BALANCE = AMT-TBAL + &
 9> AMT-PURYTD
 10> SETVAR VEND.PHONE = &
 11> STRING(AREACODE) &
 12> + "/" + STRING(PHONE)
 13> SETVAR VEND.VENDOR-ADDR-1 &
 14> = ADDRESS-1
 15> SETVAR VEND.VENDOR-ADDR-2 = &
 16> ADDRESS-1
 17> SETVAR VEND.PURCHASES-LAST = &
 18> AMT-PURLY
 19> SETVAR VEND.PURCHASES-YTD = &
 20> AMT-PDYTD
 21> SETVAR VEND.POS-YTD = NO-PURYTD
 22> SETVAR VEND.DISCOUNTS-YTD = &
 23> DISC-TAKEN
 24> SETVAR VEND.LAST-ACTIVITY-DT = &
 25> DATE-LASTTXN
 26> COPY VEND TO NEW.VENDOR
 27> ENDREAD
 28> GO

 Warehouse opens the two databases in lines 1 and

2.

 Line 3 defines a record variable which looks like

the layout of the VENDOR dataset in the database
tagged NEW.

 Line 6 defines the read loop, V. It reads the

VENDORS dataset in the database tagged OLD.
Notice that there is no FOR clause. This causes all

74 Chapter Four/Warehouse Script Examples 2/3/2005

Database to Database Examples

records in the dataset to be read.

 The selected record from the read loop V is moved

to the VEND local variable in line 7.

 Lines 8 and 9 calculated the BALANCE item by

adding AMT-TBAL and AMT-PURYTD.

 Lines 10 through 12 show an example using both

string concatenation and changing data types using
the string function. In this case, areacode and
phone are numeric data types. They are changed
to string types by using the string function.

 Lines 13 through 25 are examples of dealing with a

data name mismatch.

 Once the record has been reconstructed in the local

variable, line 26 copies the contents of the variable
out to the new database.

Comments This example illustrates a couple of very important

concepts. The first principle illustrated reminds us
how Warehouse moves data from source to target.
We see in the example that all data items with the
same name are moved, converted and transformed
automatically.

 For those fields which require extra work, e.g.

phone number field, we can use the functions
described in the Expressions chapter in the
Warehouse Reference Manual to help us make the
necessary transformations. Our last group of
conversions is moving data from fields of different
names. Any data transformation necessary to
move the old field to the new field happens
automatically.

 The last technique of note which is helpful here, as

well as when you need to take a single source and
create multiple tables or the opposite - take a
multiple data sources and create a single target, is
the use of a local record variable. This script uses

2/3/2005 Chapter Four/Warehouse Script Examples 75

Database to Database Examples

the local record variable, VEND, as a holding area
while the new record is being built. Once the new
record has been built, the local variable is copied to
the database.

76 Chapter Four/Warehouse Script Examples 2/3/2005

Database to Database Examples

Script Type Using SQLNET to access a remote Oracle database.

Applicability Through the use of SQLNET, Warehouse is able to

access remote Oracle databases on platforms not
yet supported by Warehouse directly or were
Warehouse licenses have not been purchased.
SQLNET causes Warehouse to believe that the
Oracle instance you have requested resides on the
machine where the script is running.

Technique
Illustrated

Accessing remote Oracle databases without using
Warehouse server technology REMOTE ORACLE
DATABASE ACCESS.

Background Normally, Warehouse access remote files through

its own client server technology. However, from
time to time, it is necessary to access an Oracle
database on system where Warehouse does not
reside. If SQLNET has been installed and the
databases are accessible via the machine
Warehouse is executing on, Warehouse will be able
to access the Oracle database.

 Before trying to access the Oracle database via

Warehouse, ensure that the connection is working
through SQLNET by:

 1. Issue the appropriate values for the Oracle SID

and Oracle HOME.
 2. Run SQLPLus and access the alias, e.g.

SQLPLUS scott/tiger@alias.
 3. Verify the instance by checking

SQLNET_CHECK, e.g. DESCRIBE
SQLNET_CHECK. There should be at least
column listed, e.g. CONNECTED_TO_ALIAS.

 Once this is complete and all looks well, access the

Oracle database can be accomplished like in the
example below.

2/3/2005 Chapter Four/Warehouse Script Examples 77

Database to Database Examples

Script Explanation 1> open remote oracle scott/tiger@prod
 2> read cust = remote.cust_table
 3> print 'Customers from production',

 4> print cust_id
 5> endread

 6> go

 Warehouse opens the remote Oracle database in

line1. Notice the alias name is indicated after the
Oracle user and Oracle password are given. When
executing this script, Oracle will indicate if the
connection has been made successfully or not. All
the usual Oracle security will occur.

 Line 2 reads the cust_table table from the

remote Oracle database. Notice no selection
criteria is provided. This will result in all rows
being read from this table.

 Line 3 prints the string, Customers from

production.

 On the same print started in line 3, the cust_id

is printed.

 Line 5 terminates the read block.

 Line 6 begins the execution of script. No data will

be read until this command is entered.

Comments If you are going to be accessing any Oracle

database, you need to run the version of Warehouse
that permits Oracle access. See the Warehouse
Reference Manual for more information.

78 Chapter Four/Warehouse Script Examples 2/3/2005

Freeze File Examples

Script Type Moving historical data to an offline freeze file.

Applicability Freeze files could be used in populating a data

warehouse to "freeze" a particular moment in time.
They can also be used to freeze test data before
destructive testing is done so that you can restore
the test database back to the state it was in before
the destructive test.

Technique
Illustrated

Illustrates moving customers offline only if all of
the orders are complete. Also introduces printing
and variables. IMAGE to freeze file.

Background The user has a manual master called CUSTOMERS

that contains information about every customer.
Linked to the CUSTOMERS dataset is the ORDERS
dataset. The ORDERS dataset contains information
about every order placed. The data item linking
these two datasets is called CUST-NO.

Problem #1

CUSTOMERS
(Key = CUST-NO)

ORDERS

 The user wishes to archive customers and orders

for customers who have not been active in one year
and whose orders are complete.

 To do this, two passes are made through the

ORDERS chain. One pass is to determine if all of
the orders are complete. The second pass is

2/3/2005 Chapter Four/Warehouse Script Examples 79

Freeze File Examples

necessary to archive and delete the orders.

 In addition to this archival task, the user also

wishes to generate a report of all of the archived
orders. The report should display the customer
number, order number, order description and order
date, and be sorted by customer number and order
number.

 A couple of approaches can be used with this

situation. The technique that is being used here is
"re-reading" the data when all the conditions have
been met. So the first time, we read the order lines
to check and see if they are all complete. If they
are not, we stop processing the record immediately.
If they are all complete, we "re-read" the data for
the copy and delete process.

Script Explanation 1> open cust image cust.data pass=WRITER &

 2> mode=1

 3> create ordera archive ordera

 4> header $tab 40, &

 5> 'Archived orders as of', $today

 6> header

 7> header 'Cust No Order No Desc', &

 8> $tab 40, 'Date'

 9> define all-complete :x1

 10>

 11> read customers = cust.customers for &

 12> last-active < $today - 19010000

 13> setvar all-complete = 'y'

 14> read chk-order = cust.orders for &

 15> cust-no = customers.cust-no &

 16> and all-complete = 'y'

 17> if order-status <> "CMPL" then

 18> setvar all-complete = 'n'

 19> endif

 20> endread

 21> if all-complete = 'y' then

 22> copy customers to ordera.cust

 23> read orders = cust.orders for &

 24> cust-no = customers.cust-no &

 25> order by cust-no, order-no

80 Chapter Four/Warehouse Script Examples 2/3/2005

Freeze File Examples

 26> copy orders to ordera.orders

 27> print cust-no, order-no,

 28> print order-des:20,order-date

 29> delete orders

 30> endread

 31> delete customers

 32> endif

 33> endread

 34> go

 The open statement, which accesses files which

already exist, is used in line 1 to open the IMAGE
database cust.data and the database is tagged
cust.

 The create statement, which accesses files which

do not exist, is used to create an archive called
ordera and tagged ordera.

 Lines 4 and 5 create a header line. Notice the use

of the $tab to indicate the placement of the string
and the use of the $today to print today's date.
The format of $today can be controlled with the
date functions. The default format of $today is
described in the Expressions chapter of the
Warehouse Reference Manual.

 Line 6 results in a blank header line.

 Lines 7 and 8 generate a header line which is used

to print field name headers. Notice the use of the &
to indicate the continuation of the header
statement beyond one line.

 Line 9 defines a local variable for use in our script.

 Lines 11 and 12 define the read loop tagged,

customers. The read loop selects records out of
the customers dataset in the database tagged
cust which have a last-active date less than
one year ago. Notice that because $today is a
numeric value arithmetic can be done.

 Line 13 initializes the all-complete variable.

2/3/2005 Chapter Four/Warehouse Script Examples 81

Freeze File Examples

 Lines 14 and 15 define the read loop tagged chk-

order. This read loop selects those records from
the orders dataset in the database tagged cust
whose cust-no matches the one selected in the
customers read loop and continues until the local
variable's, all-complete, value is y.

 Line 17 sets up a block of conditional processing for

those records which are not CMPL. This block is
terminated by the endif statement in line 19.

 Line 18 sets the all-complete variable to n.

 Line 20 terminates the order read loop.

 Line 21 begins an IF block. If the local variable,

all-complete, is set to yes, then the statements
within the block are executed. This IF block is
terminated by the endif on line 32.

 Line 22 copies the records selected in the

customers read loop to the file tagged ordera and
given the name cust.

Comments For more information on date handling, see

Expressions in the Warehouse Technical Manual.

 All archive tapes can be read on any of the

platforms supported by Warehouse.

82 Chapter Four/Warehouse Script Examples 2/3/2005

Freeze File Examples

Script Type Moving historical data to an offline freeze file.

Applicability Managing historical data is an universal problem

that spans both relational and hierarchical
databases. The problem first presents itself as slow
performance and gets worse from there. Managing
historical information must be a part of every
application's routine maintenance.

Technique
Illustrated

Illustrates an example which archives and deletes
selected orders and all associated information. The
script follows the order through many logical and
physical chains in four datasets. Also illustrated
are date handling techniques and functions. Freeze
file and IMAGE example.

Background The next example is an order entry system. The

database structure of the data to be archived is
shown below.

Customers

Key = cust-no

Orders

Ord-M

Key = order-no

Items:

order-no
part-no

Order-parts

Ord-Part-M

Key=part

Part-List

Part-Master

Key=part-no

Problem #2

 The ORDERS dataset and ORDER-PARTS dataset are

logically related via the ORDER-NO field. The
ORDERNO field and PART-NO field are concatenated
to create the key PART for the ORD-PART-M and the
PART-LIST datasets. The PART-MASTER contains
a description of the part.

 The user wishes to archive all "old" orders, i.e.

closed orders that are six months or older, for
those customers that don't have a current order
open. The CUSTOMERS dataset has a status field

2/3/2005 Chapter Four/Warehouse Script Examples 83

Freeze File Examples

which has the value OPEN if there are open orders
associated with the customer. The ORDERS,
ORDER-PARTS, and PART-LIST need to be archived
and deleted from the database. The user also
wants a report of all parts which were archived.

Script Explanation 1> open cdb image "custdb WRITE 1"

 2> create custarc archive tape

 3> define part-order : x18
 4> define prt-desc : x80

 5> header 'Part', $tab 20, 'Desc.', &

 6> $tab 60, 'Qty'

 7> header

 8>
 9> read c = cdb.customer &

 10> for cust-status <> "OPEN"

 11> read orders = cdb.orders for &

 12> cust-no = c.cust-no and &

 13> order-status = "CMPL" and &

 14> order-date < &

 15> yyyymmdd(daynum($today) - 180) &

 16> - 19000000

 17> copy orders to custarc.orders

 18> read op = cdb.order-parts for &

 19> order-no = orders.order-no

 20> copy op to custarc.order-parts

 21> setvar part-order = &

 22> order-no + part-no

 23> read parts = &

 24> cdb.part-list &

 25> for part = part-order &

 26> order by part

 27> copy parts to &

 28> custarc.part-list

 29> READ PM = CDB.PART-MASTER &
 30> FOR PART-NO = OP.PART-NO
 31> SETVAR PRT-DESC = &

 32> PART-DESC

 33> ENDREAD

 34> PRINT PART, PRT-DESC:40,

 35> PRINT $TAB 60, QTY

 36> DELETE PARTS

 37> ENDREAD

 38> DELETE OP

84 Chapter Four/Warehouse Script Examples 2/3/2005

Freeze File Examples

 39> ENDREAD

 40> DELETE ORDERS

 41> ENDREAD

 42> ENDREAD

 43> GO

 Line 1 opens the IMAGE database CUSTDB and

tags it CDB. Line 2 creates an archive file, TAPE,
and tags it CUSTARC.

 Lines 3 and 4 define two local variables.

 Lines 5 and 6 define a header. Notice the definition

of the header is split over two lines. The &
character indicates that we are continuing the
definition of a single header line.

 Line 7 defines the second line of the header.

Headers are printed at the top of each page
printed.

 Lines 9 and 10 define the read loop, C, which reads

the dataset CUSTOMER from the database tagged
CDB for those records whose status is not equal to
OPEN.

 Lines 11 through 16 define the read loop, ORDERS,

which selects records from the ORDERS dataset
whose order-status is complete and order-date is
less than 6 months ago. Note the use of the
DAYNUM and YYYYMMDD functions. They are used to
calculate a date six months ago.

 The records selected in the ORDERS read loop are

copied to the archive tape in line 17.

 Lines 18 and 19 read the associated records in the

ORDER-PARTS dataset matching on ORDER-NO from
the ORDERS read loop.

 Line 20 copies the selected records from the OP

read loop to the archive tape.

 The local variable, PART-ORDER, is assigned the

2/3/2005 Chapter Four/Warehouse Script Examples 85

Freeze File Examples

value of the data item ORDER-NO concatenated
together with the value of the PART-NO data item
in line 22.

 Lines 23 through 26 define the read loop PARTS,

which reads the PART-LIST dataset for the
matching PART-ORDERS and sorts them by PART.

 Those selected records are then copied out to the

archive tape in lines 27 and 28.

 In lines 29 through 31, the PM read loop reads the

part-master dataset for records matching on the
part number from the OP loop.

 The description field is saved in the local variable,

PART-DESC in lines 31 and 32.

 Lines 34 and 35 generate a single print line. The

comma at the end of line 34 indicate the definition
of the print continues on the next line.

Comments Note the use of upper and lower case. Warehouse

is not case sensitive. You can use upper and lower
case as you desire. Studies have shown that lower
case is easier to read.

86 Chapter Four/Warehouse Script Examples 2/3/2005

Freeze File Examples

Script Type Creating a historical archival log and moving data

to a offline freeze file.

Applicability Many times when moving information, it is nice to

create a log file of the transactions that have been
moved. This example could be applied to EDI, data
conversion or synchronization applications.

Technique
Illustrated

Copying to an archive file and an output file at the
same time. Illustrates creating a small database
containing selected items of data which have been
archived. Freeze file and IMAGE example.

Background The user would like to be able to know when the

information was archived in order to mount the
right archive tapes to retrieve the information. In
order to be able to do this, the user is going to
create a small database which contains the patient
number, name, and date archived. During the
archive process, Warehouse copies the data to the
archive tape and copies the selected data items to
the archive log database.

Script Explanation 1> OPEN PATIENT IMAGE "PATDB WRITE 1"

 2> CREATE PATARC ARCHIVE TAPE

 3> OPEN ARCHLOG IMAGE LOGDB PASS=W &

 4> MODE=1

 5> * LOGDB contains the patient number,

 6> * patient name, date archived

 7> DEFINE PATLOG : USING &

 8> ARCHLOG.PAT-ARCHIVED

 9>

 10> READ PE = PATIENT.PAT-ENCOUNTER &

 11> FOR STATUS = "I"

 12> COPY PE TO PATARC.PAT-ENCOUNTER

 13> SETVAR PATLOG = PE

 14> SETVAR PATLOG.DATE-ARCHIVED = &

 15> $TODAY

 16> COPY PATLOG TO ARCHLOG.PAT-
ARCHIVED

 17> ENDREAD

2/3/2005 Chapter Four/Warehouse Script Examples 87

Freeze File Examples

 18> GO

 In line 1, Warehouse opens the database PATDB

using mode 1 and the password WRITE and tags it
PATIENT. In line 2, Warehouse creates the archive
file TAPE and tags it PATARC. In line 3, Warehouse
opens the database LOGDB using mode 1 and the
password W.

 Lines 5 and 6 are comments. All comment lines

begin with *. All text after the * is ignored.

 Lines 7 and 8 define a variable, PATLOG, using the

same layout as the dataset PAT-ARCHIVED in the
database tagged ARCHLOG.

 The read loop tagged, PE, in lines 10 and 11, reads

the PAT-ENCOUNTER dataset in the database
tagged PATIENT for all patients which are inactive.
These selected records are copied, in line 12, to the
archive file tagged PATARC and named PAT-
ENCOUNTER. In line 13, the SETVAR statement
copies only the data items from PAT-ENCOUNTER
whose name matches those in the variable PATLOG.
Notice that we use the read tag PE to tell
Warehouse to move the data into a variable. In
line 14 and 15, the data item DATE-ARCHIVED is
initialized to a system constant containing today's
date, $TODAY. Once we are finished constructing
the record, the variable PATLOG is copied, in line
16, to the PAT-ARCHIVED dataset in the database
tagged ARCHLOG.

Comments Having a file which contains part of the

information that was archived is used frequently
when large amounts of detailed information are
generated by the application. These types of
applications do not have the luxury of being able to
keep three years or more of data online to help
resolve customer service issues.

 The files containing this subset of archived data do

not necessarily need to reside on the same machine

88 Chapter Four/Warehouse Script Examples 2/3/2005

Freeze File Examples

as the production data. Many customers elect to
put this information on CD on their PCs.

2/3/2005 Chapter Four/Warehouse Script Examples 89

Freeze File Examples

Script Type Retrieval historical data from a freeze file.

Applicability Freeze files can be selectively retrieved from. This

is nice for both populated just a portion of a test
environment or a repopulation of a new data
warehouse data model.

Technique
Illustrated

Retrieval example. Illustrates selective retrieval
and limiting the number of detail records using a
variable. Freeze file and IMAGE example.

Background This example retrieves a particular order from an

archive tape which was created in the previous
archive example. The order number that the user
wants to retrieve is 8802351.

 As the database administrator, we know that for

every order there is only one ORDERS record.
Warehouse is smart enough to only read the
minimum number of master records, but it does
read all of the detail records. Warehouse is
directed to only select one ORDERS record through
the use of a variable. Once the ORDERS record has
been selected, all of the associated records are
copied from the tape.

Script Explanation 1> OPEN CUSTARC ARCHIVE TAPE

 2> OPEN CUST IMAGE CUSTDB PASS=WRITER &

 3> MODE=1

 4> DEFINE NUM'FOUND : I1

 5> SETVAR NUM'FOUND = 0

 6>

 7> READ OLDORD = CUSTARC.ORDERS &

 8> FOR ORDER-NO = 8602351 &

 9> AND NUM'FOUND = 0

 10> SETVAR NUM'FOUND = NUM'FOUND + 1

 11> COPY OLDORD TO CUST.ORDERS

 12> READ OLDOP = CUSTARC.ORDER-PARTS &
 13> FOR ORDER-NO = OLDORD.ORDER-NO
 14> COPY OP TO CUST.ORDER-PARTS

 15> READ OLDPL = CUSTARC.PART-LIST &

90 Chapter Four/Warehouse Script Examples 2/3/2005

Freeze File Examples

 16> FOR PART = OLDOP.PART
 17> COPY OLDPL TO CUST.PART-LIST

 18> ENDREAD

 19> ENDREAD

 20> ENDREAD

 21> GO

 Line 1 opens an existing archive file, TAPE, and

tags it CUSTARC. Lines 2 and 3 open the IMAGE
database, CUSTDB, using the tag CUST.

 Lines 4 and 5 define and initialize a local variable,

NUM'FOUND.

 The read loop, OLDORD, defined in lines 7 through

9, reads those orders in the ORDERS dataset in the
file tagged CUSTARC whose order number is
8602351 while the variable NUM'FOUND value is 0.

 Line 10 increments our local variable.

 Line 11 copies the selected record to the ORDERS

dataset in the file tagged CUST.

 Lines 12 and 13 read the associated parts from the

dataset ORDER-PARTS in the file tagged CUSTARC
for those whose order number matches the one read
in the read loop tagged, OLDORD. Notice the
association is made using the read tags.

 Line 14 copies the selected record to the ORDER-

PARTS dataset in the database tagged CUST.

 Lines 15 and 16 read the selected records in the

PART-LIST dataset on the archive file for those
whose part number matches the one selected in the
OLDOP read loop.

 Line 17 copies the selected record to the PART-

LIST dataset in the database tagged CUST.

Comments Notice the use of ' in the variable name. This is

allowed. The rules for variable names are covered
in the Warehouse Reference Manual.

2/3/2005 Chapter Four/Warehouse Script Examples 91

Freeze File Examples

 Another point to notice is the strength of the

indented read loops. Indented read loops are not
executed unless you have fulfilled the selection
criteria in the "owner" loop. By using this
technique, we can limit the number of records read
to only those that are pertinent to our process.

 Archive files must be read in the order that they

were written in. To determine this order, use the
show statement.

92 Chapter Four/Warehouse Script Examples 2/3/2005

Freeze File Examples

Script Type Accessing multiple freeze files.

Applicability In audit situations, an auditor many want to see a

range of accounts over many different time periods.
Being able to access multiple freeze files at the
same time makes this an easy and quick process.

Technique
Illustrated

Retrieval example. Reporting from a database and
multiple archive files. Also illustrates printing an
indexed data item. Freeze file and IMAGE
example.

Background Once the data is archived, sometimes it is

necessary to look at the data on more than one
archive file at a time. This next example comes to
us from a client. They had to archive information
over many years and really never had to access it
until the auditors arrived.

 The auditor wanted to look at multiple years of

certain account numbers on the same report. The
years had been archived one year at a time onto
tape. So, the user would like to produce a report
using data from both the history archive files and
the active production data.

Script Explanation 1> OPEN LASTYR ARCHIVE ORD94

 2> OPEN PREVYR ARCHIVE ORD93

 3> OPEN PRODDB IMAGE ORDER &

 4> pass=WRITE mode=1

 5> DEFINE CURRENTAMT : I2

 6> DEFINE PREVAMT : I2

 7> READ ORDS94 = LASTYR.ORDERSUM &

 8> FOR PROD = "1234"

 9> SETVAR PREVAMT = QTY

 10> SETVAR CURRENTAMT = 0

 11> READ ORDS95 = PRODDB.ORDERSUM &

 12> FOR PROD = ORDS94.PROD

 13> PRINT CUST-NO,

 14> PRINT CUST-NAME

2/3/2005 Chapter Four/Warehouse Script Examples 93

Freeze File Examples

 15> PRINT "ADDRESS:"

 16> PRINT "":2, ADDR[1]

 17> PRINT "":2, ADDR[2]

 18> PRINT "":2, ADDR[3]

 19> SETVAR CURRENTAMT = QTY

 20> ENDREAD

 21> READ ORDS93 = PREVYR.ORDERSUM &

 22> FOR PROD = ORDS94.PROD

 23> PRINT "":5,"CURRENT:",

 24> PRINT CURRENTAMT &

 25> PIC "-Z,ZZZ,ZZZ.ZZ",

 26> PRINT "LAST YR", PREVAMT &

 27> PIC "-Z,ZZZ,ZZZ.ZZ",

 28> PRINT "YEAR BEFORE LAST",

 29> PRINT QTY, PIC "-Z,ZZZ,ZZZ.ZZ"

 30> ENDREAD

 31> ENDREAD

 32> GO

 Warehouse opens the archive file ORD94 and tags it

LASTYR in line 1. Warehouse opens the archive file
ORD93 and tags it PREVYR in line 2. Warehouse
opens the database ORDER using mode 1 and the
password WRITE and tags it PRODDB in lines 3 and
4.

 Warehouse defines two variables to hold amount

fields in lines 5 and 6.

 In the read loop tagged ORDS94, defined in lines 7

and 8, Warehouse reads the ORDERSUM file for PROD
equal to 1234. PREVAMT is set to the value
contained in the QTY field in the dataset ORDERSUM
on the archive file tagged LASTYR in lines 9 and 10.

 In the read loop tagged ORDS95, defined in lines 11

and 12, Warehouse reads the associated records in
the ORDERSUM dataset matching on PROD.
Warehouse prints a report containing customer
number, name, address. Notice the syntax for
referring to a specific array element. Notice the
use of "": to skip a specified number of spaces.
CURRENTAMT is set to the value contained in the
QTY field on the database tagged PRODDB. The

94 Chapter Four/Warehouse Script Examples 2/3/2005

Freeze File Examples

PRINT statements define more than one print line.
The first print line, defined in lines 13 and 14,
prints the customer number and name. Lines 15
through 18 each generate a print line.

 In the read loop tagged ORDS93 defined in lines 21

and 22, Warehouse reads the file ORDERSUM in the
archive file tagged PREVYR matching on PROD from
the read loop tagged ORDS94. Warehouse prints a
report line containing order amounts from all three
years. Notice the use of the PIC clause. Notice all
the print statement used only generate one print.

Comments This example introduces some basic printing

concepts. The first concept is illustrated with a
couple of variations in the construction of the print
line. Warehouse continues a print line if: the print
statement ends in a comma or it encounters an
ampersand (&). If neither of these conditions
exists, Warehouse generates a new print line.

 The last printing concept illustrated is the use of

edit masks. The edit masks put a formatting mask
over the data. The various PIC clauses are detailed
in the PRINT statement in the
Commands/Statements chapter in the Warehouse
Reference Manual.

2/3/2005 Chapter Four/Warehouse Script Examples 95

Freeze File Examples

Script Type Printing information from the freeze file.

Applicability Knowing what is on the freeze file aids in

retrieving the right information from it. This is
true whether the file is used for populating test
environments or archiving historical information.

Technique
Illustrated

The most common form of "retrieval" of information
is producing a report of the archived information.
It is our experience that 80% of historical data
access requires generating a report.

 If the data resides online, companies typically use

the report writers that they are using for their
production reporting to produce the report of
historical information. Once the data has moved
off to tape, Warehouse is the method of choice.

 Warehouse allows the user to produce a report of

historical information directly from tape. You need
not restore the information back on to the system
to produce the report.

Background The user wishes to review the sales orders which

were archived in a previous script. The report
demonstrates some of the more complex functions
of the Warehouse reporting facility.

96 Chapter Four/Warehouse Script Examples 2/3/2005

Freeze File Examples

The report looks as follows

:
WED, MAY 2, 1994, 12:41 PM Page:
TITLE : SALES ORDER LISTING

 Sales Date Date Amount Amount
 Order Customer Invoiced Regstr Of Sales Paid St
---------- -------- -------- ------ -------- -------- --
 11000030 000000 860421 860421 149.72 149.72 TF
 11000050 000000 860421 860421 149.72 149.72 TF
 11000130 000000 860421 860421 29.76 29.76 TF
 11000120 000000 860421 860421 4.99 4.99 TF
 11000122 000000 860421 860421 14.28 14.28 TF
 11000130 000000 860421 860421 -14.28 -14.28 TF
 11000145 000000 860421 860421 617.70 617.40 TF
 11000530 000000 860421 860421 16.44 16.44 TF
 11000730 000000 860421 860421 -16.44 -16.44 TF
 11000722 000000 860423 860423 109.72 109.72 TF
 11000820 000000 860423 860423 121.72 121.72 TF
 11000920 000000 860423 860423 121.66 121.66 TF
 11000990 000000 860423 860423 6.97 6.97 TF
 11000999 000000 860423 860423 712.45 712.45 TF
 11001030 000000 860423 860423 204.97 204.97 TF
 11001020 000000 860425 860425 .12 .12 TF
 11002030 000000 860425 860425 187.69 187.69 TF
 11030030 000000 860425 860425 53.21 53.21 TF
•
•
•

3001 ORDHEAD Entries Archived

2/3/2005 Chapter Four/Warehouse Script Examples 97

Freeze File Examples

Script Explanation 1> INPUT AO ARCHIVE ARCORD

 2>

 3> DEFINE COUNTER : I2

 4> SETVAR COUNTER = 0

 5>

 6> HEADER $TODAY,",",$HOUR, $TAB 74, &

 7> "Page:", $PAGENO:4

 8> HEADER "TITLE : SALES ORDER
LISTING"

 9> HEADER

 10> HEADER $tab 4,"Sales", $tab 25, &

 11> "Date", $tab 34, "Date", $tab 44, &

 12> "Amount", $tab 55, "Amount"

 13>

 14> HEADER $tab 4, "Order", $tab 12, &

 15> "Customer", $tab 22, "Invoiced", &

 16> $tab 32, "Regstr",: $tab 44, &

 17> "Of Sales", $tab 56, "Paid", &

 18> $tab 62,"St"

 19> HEADER "----------", $tab 13,&

 20> "--------", $tab 23,&

 21> "--------", $tab 33, "------ ", &

 22> $tab 43,"---------", &

 23> $tab 53,"--------", $tab 62, &

 24> ""--"

 25> READ OH = AO.ORDHEAD FOR &

 26> STR(SALES-ORD,1,2) = "21"

 27> READ OS = AO.ORDSHIPTO &

 28> ORDER BY SALES-ORD

 29> PRINT $TAB 2,ORDHEAD.SALES-ORD,

 30> PRINT "":4,ORDHEAD.CUSTOMER,

 31> PRINT $TAB 22,

 32> PRINT ORDHEAD.DATE-INVOICE:6,

 33> PRINT $TAB 32,

 34> PRINT ORDHEAD.DATE-REGSTR:6,

 35> PRINT $TAB 44,

 36> PRINT ORDHEAD.AMT-OFSALES:7:2,

 37> PRINT $TAB 56,

 38> PRINT ORDHEAD.AMT-PAID:7:2,

 39> PRINT $TAB 62, STATUS

 40> ENDREAD

 41> SETVAR COUNTER = COUNTER + 1

 42> ENDREAD

 43> PRINT

98 Chapter Four/Warehouse Script Examples 2/3/2005

Freeze File Examples

 44> PRINT "*-----*

 45> PRINT COUNTER,$TAB 6,

 46> PRINT "ORDHEAD Entries Archived"

 47> PRINT "*-----*"

 48> PRINT

 49> GO

 The archive file tagged AO is opened in line 1.

 Lines 2 and 3 define and initialize the local

variable COUNTER.

 Lines 6 through 23 define the header that appears

on the top of every printed page. The header is
composed of six print lines. Notice the use of data
placement through $tab, the use of system
constants (lines 6/7) and the generation of a blank
header line (line 9).

 Lines 24 through 26 define the read loop tagged,

OH, which selects those records in the ORDHEAD
dataset in the database AO whose SALES-ORD first
two positions is equal to 21. Notice that records
are sorted by SALES-ORD.

 Lines 28 through 37 define a single print line.

Notice the use of $tab for data placement and the
use of the : to limit or describe how numeric data
should be printed.

 Line 39 increments the counter.

 Lines 41 through 46 print lines after the data has

been processed.

Comments Reports can be put to paper, printer or files.

Sometimes it is more straight-forward to "print"
extract files for use with PC import or SQL loader
because of its flexibility in generating numeric data
with edit masks.

2/3/2005 Chapter Four/Warehouse Script Examples 99

Freeze File Examples

Script Type Using freeze files to create test environments.

Applicability No matter what type of database you are using,

having small logically intact test environments are
a critical part of everyone's development process.
Using freeze files to refresh from, whether the test
environment is on the same or different machine, is
helpful.

Technique
Illustrated

Using archive files to "freeze" test database
selection for use in destructive testing. Freeze file
and Oracle example.

Background In environments where the production environment

is heavily used and inquiries against the
production data slow down the online transaction
process, using techniques which minimize data
selection from the production environment are
helpful.

 A client had a number of satellite sites all using a

centrally developed application. Each satellite site
was sized just large enough to handle its online
transaction processing demands.

 However, when testing new releases of its

applications liked to test it against each of the
satellite site's data. The following example shows
how to "save" the test data in an archive file. This
archive file can be used repeatedly to "refresh" the
test database.

Script Explanation 1> open site1 oracle scott/tiger

 2> create s1save archive s1save

 3> read m = site1.m for selection = "Y"

 4> copy m to s1save.m

 5> endread

 6> go

 Warehouse opens the Oracle database using user

100 Chapter Four/Warehouse Script Examples 2/3/2005

Freeze File Examples

scott and password tiger. Warehouses creates
the archive file s1save in line2.

 The read loop tagged m, defined in line 3, reads the

records in the table m for the rows that have Y as
the value in the column selection.

 Line 4 copies the selected rows to the archive file.

Comments The data is loaded from the archive file before each

test. The test is run, data is destroyed or altered,
and the test results are verified. When they are
ready to test again, the tables are dropped or
erased and the data is reloaded from the archive
file.

2/3/2005 Chapter Four/Warehouse Script Examples 101

Mixed File Examples

Script Type

Loading data from a flat file to an Oracle database.

Applicability Flat file to database loads are common for a

multitude of applications including: outside data
sources for data warehouses, EDI, synchronization
application, bulk entry of application and PC data
loads.

Technique
Illustrated

Loading data from a flat file of multiple record types
to a single table in an Oracle database. FIXED file
to Oracle example.

Background Each day a file is sent from the corporate facility

with new parts added to the parts master by the
engineers. At each remote site, the flat file must be
converted to the right record format for addition to
the Oracle table.

 The following example shows how to construct a

single table from multiple records from a flat file.
Illustrated in this example is the use of FORMAT
statements, record DEFINEs, and techniques for
constructing records.

The flat file's format changes from one record type to
another. All record types share a common 31 bytes
which includes the record type and the part number.
The remaining bytes are different for each of the
record types. The "A" type records use the same
format for every A record. The "B" type records, use
the same format for every B record.

Script Explanation 1> open f oracle scott/tiger
 2> open flat fixed flatfile
 3>
 4> *
 5> **Define the various record types
 6> *
 7> format a_rec : record
 1-> part_desc : oracle char(60)
 61-> bom_uom_cd : oracle char(12)

2/3/2005 Chapter Four/Warehouse Script Examples 103

Mixed File Examples

 73-> cubic_vol : oracle char(24)
 97-> list_price : oracle char(18)
 115-> filler : oracle char(5)
 13> end
 14>
 15> format b_rec : record
 1-> prod_fam_number : oracle char(24)
 25-> purch_uom_cd : oracle char(12)
 37-> sales_uom_cd : oracle char(12)
 49-> shelf_life : oracle char(4)
 53-> stock_uom_cd : oracle char(12)
 65-> upc_no : oracle char(20)
 85-> vat_cd : oracle char(12)
 97-> weight : oracle char(18)
 115-> filler : oracle char(18)
 25> end
 26>
 27> **Define the entire record including
 28> * portion shared among all records
 29>
 30> format flatrec: record
 1-> part_num : oracle char(30)
 31-> rec_id : oracle char(1)
 32-> arec : format a_rec offset 32
 32-> brec : format b_rec offset 32
 35> end
 36>
 37> *
 38> **Target holding areas
 39> *
 40> define part_rec : using f.scott.part
 41> define part_seg_rec : &
 42> using f.scott.part_seg
 43>
 44> *
 45> **Records for initialization of table
 46> ** files so we don't write out
 47> ** last part's data
 48> *
 49>
 50> define part_rec_init : &
 51> using f.scott.part
 52> define part_seg_rec_init : &
 53> using f.scott.part_seg
 54>
 55> *
 56> **Define flags to keep track of the
 57> ** records we have seen
 58> *
 59> define got-a-rec : x1 value "N"
 60>
 61> define old-part-num : x30 value " "
 62> define cur-part : &

104 Chapter Four/Warehouse Script Examples 2/3/2005

Mixed File Examples

 63> oracle number(11,0) value 0
 64>
 65> define lots-spaces : oracle char(100)
 66> define ten-spaces : oracle char(10) &
 67> value " "
 68>
 69> setvar lots-spaces = ten-spaces + &
 70> ten-spaces + ten-spaces + &
 71> ten-spaces + ten-spaces + &
 72> ten-spaces + ten-spaces + &
 73> ten-spaces + ten-spaces + &
 74> ten-spaces
 75>
 76> read allrecs = flat format flatrec &
 77> order by part_num, rec_id
 78> if part_num <> old-part-num
 79> if got-a-rec = "Y" then
 80> setvar cur-part to cur-part + 1
 81> copy part_rec to f.scott.part
 82> setvar got-a-rec = "N"
 83> endif
 84> setvar old-part-num = part_num
 85> endif
 86> if rec_id = "A" then
 87> setvar got-a-rec = "Y"
 88> if allrecs.arec.bom_uom_cd = &
 89> str(lots-spaces,1,12) then
 90> setvar allrecs.arec.bom_uom_cd &
 91> = "*"
 92> endif
 93> if allrecs.arec.part_desc = &
 94> str(lots-spaces,1,60) then
 95> setvar allrecs.arec.part_desc &
 96> = "*"
 97> endif
 98> setvar part_rec.user_part_no = &
 99> part_num
 100> setvar part_rec.part_no = &
 101> cur-part
 102> setvar part_rec.part_desc = &
 103> allrecs.arec.part_desc
 104> setvar part_rec.bom_uom_cd = &
 105> allrecs.arec.bom_uom_cd
 106> setvar part_rec.cubic_vol = &
 107> allrecs.arec.cubic_vol
 108> setvar part_rec.list_price = &
 109> allrecs.arec.list_price
 110> endif
 111> if rec_id = "B" then
 112> if allrecs.brec.purch_uom_cd = &
 113> str(lots-spaces,1,12)
 114> setvar &
 115> allrecs.brec.purch_uom_cd &

2/3/2005 Chapter Four/Warehouse Script Examples 105

Mixed File Examples

 116> = "*"
 117> endif
 118> if allrecs.brec.sales_uom_cd = &
 119> str(lots-spaces,1,12)
 120> setvar &
 121> allrecs.brec.sales_uom_cd &
 122> ="*"
 123> endif
 124> if allrecs.brec.stock_uom_cd &
 125> = str(lots-spaces,1,12)
 126> setvar &
 127> allrecs.brec.stock_uom_cd &
 128> = "*"
 129> endif
 130> setvar part_rec.prod_fam_no = 0
 131> setvar part_rec.stock_uom_cd &
 132> = allrecs.brec.stock_uom_cd
 133> setvar part_rec.sales_uom_cd &
 134> = allrecs.brec.sales_uom_cd
 135> setvar part_rec.purch_uom_cd &
 136> = allrecs.brec.purch_uom_cd
 137> setvar part_rec.shelf_life &
 138> = allrecs.brec.shelf_life
 139> setvar part_rec.upc_no = &
 140> allrecs.brec.upc_no
 141> setvar part_rec.vat_cd = &
 142> allrecs.brec.vat_cd
 143> setvar part_rec.weight = &
 144> allrecs.brec.weight
 145> endif
 146> endread
 147> *
 148> **Handle last record
 149> *
 150> if got-a-rec = "Y" then
 151> copy part_rec to f.scott.part
 152> endif

 Warehouse opens the Oracle database using user

scott and password tiger. Warehouses opens
the fixed file flatfile in line2.

 Lines 7 through 13 define a record format, a_rec.

This record format is going to be used to define the
changing part of the flat file which is different for
each record type. This format describes an A
record.

 Lines 15 through 25 define a record format, b_rec.

This format describes a B record.

106 Chapter Four/Warehouse Script Examples 2/3/2005

Mixed File Examples

 Lines 30 through 35 define the shared record

format of the file tagged flat. Notice how other
formats are used to "redefine" bytes 32 through the
end of the file: one for the A type records and one
for the B type records.

 Line 40 defines a holding area (record type

variable) called part_rec which takes its layout
from the table scott.part in the database tagged
f.

 Line 41 defines a record type variable,

part_seg_rec, which takes its layout from the
table scott.part_seg in the database tagged f.

 Lines 50 and 51 define a record type variable,

part_rec_init, which is used to clear out the
record in between part numbers.

 Lines 52 and 53 define a record type variable,

part_seg_rec_init, which is used to clear out
the record in between part numbers.

 Line 59 defines a variable, got-a-rec, which is

used as a switch to determine if we are processing
an A record type.

 Line 61 defines a variable, old-part-num, which

is used to determine if we are processing a new
part number.

 Lines 62 and 63 defines a local variable, cur-part,

to keep track of the assigned part number. Notice
the use of the Oracle data types. Local variables
can be of any of data types defined in the
Warehouse Reference Manual in the chapter Data
Types.

 Line 65 defines a local variable, lots-spaces,

which is used to compare against fields that are not
supposed to be "NOT NULL" in the flat file.

 Lines 66 and 67 defines a variable, ten-spaces,

2/3/2005 Chapter Four/Warehouse Script Examples 107

Mixed File Examples

which contains ten spaces. Notice the use of the
value clause to initialize the field.

 Lines 69 through 74 initialize lots-spaces with a

hundred spaces by concatenating ten occurances of
ten-spaces.

 Lines 76 and 77 define a read loop, allrecs, which

reads the file tagged, flat, using the record format
flatrec. The file is read in sorted order. The sort
order defined by the order by clause is part_num
as the primary sort and rec_id as the secondary
sort.

 If a new part number is being processing, line 77

causes lines 79 through 84 to be executed.

 If an A record is being processed, line 78 causes

lines 79 through 83 to be executed.

 Line 80 increments the cur-part variable by 1.

 Lines 81 copies the contents of the record variable,

part_rec, to the scott.part table in the
database tagged f.

 Line 82 resets the got-a-rec switch to N.

 Line 84 sets the variable old-part-num to the

current value of part_num.

 Line 86 causes lines 87 through 110 to be executed

if Warehouse is processing an A record.

 Line 87 sets the switch, got-a-record, to Y.

 Lines 88 through 92 check to see if the data item

bom_uom_cd is spaces. If it contains spaces,
Warehouse changes it to *.

 Lines 93 through 97 check to see if the data item

part_desc is spaces. If it contains spaces,
Warehouse changes it to *.

108 Chapter Four/Warehouse Script Examples 2/3/2005

Mixed File Examples

 Lines 98 through 109 move the remaining fields

into the record.

 If Warehouse is processing a B record, line 111

causes lines 112 through 145 to be executed.

 Lines 112 through 117 check to see if the data item

purch_uom_cd is spaces. If it contains spaces,
Warehouse changes it to *.

 Lines 118 through 123 check to see if the data item

sales_uom_cd is spaces. If it contains spaces,
Warehouse changes it to *.

 Lines 124 through 129 checks to see if the data

item stock_uom_cd is spaces. If it contains
spaces, Warehouse changes it to *.

 Lines 130 through 144 moves the remaining fields

into the record.

 Lines 150 through 152 copies the last record

processed to the scott.part table.

Comments This example shows how multiple records from one

file can be combined in a holding area, and when
all the components of the record are built, be copied
to the target file.

 The trick to this an example is to read the file in

sorted order so that Warehouse reads all the
records associated with a part together and in
record type order. The IF statements control the
processing for each of the record types and also
handle data "problems" that appear in the source
file, e.g. NOT NULL values.

2/3/2005 Chapter Four/Warehouse Script Examples 109

Mixed File Examples

Script Type Using a flat file to drive a Warehouse process.

Applicability Universal.

Technique
Illustrated

Illustrates using an flat file to drive an archive
process. The flat file contains key values of those
records which have been qualified for archiving.
This flat file could have been created by another
process or program such as SUPRTOOL or SQL.
This technique is also useful for creating a test
database containing a predetermined list of records.

Background The application software package that the user has

installed uses a two-step process to delete customers.
The end user indicates via a transaction screen those
customers they wish to delete. The result of this
transaction is a transaction log file which contains
the customer number of those customers "tagged" to
be deleted. That night, a batch job runs and deletes
the customer and their corresponding orders from
the database.

 The problem is the end user would prefer that the

customers be moved into a history database instead
of being deleted.

 The structure of the database is the same as the one

described in our first example and is detailed below.

110 Chapter Four/Warehouse Script Examples 2/3/2005

Mixed File Examples

Problem #1

CUSTOMERS
(Key = CUST-NO)

ORDERS

 The ideal solution would be to use the transaction

file, which contains the customer to be "archived", as
our driver file. The script below uses the driver file
technique.

Script Explanation 1> OPEN CUTS IMAGE "CUST PASS 1"

 2> OPEN DRIVER FIXED DRIVER

 3> OPEN HIST IMAGE CUSTH &

 4> pass=PASS mode=1

 5> FORMAT RECORD FLAT_FMT

 1-> CUST-NO : X12

 13-> END

 8> HEADER "OE0900J", $TAB 120, $PAGENO

 9> HEADER $CENTER, "Order Entry"

10> HEADER $CENTER, "Customer Archival"

 11> HEADER $CENTER, $TODAY

 12> HEADER

 13> READ CUST-NUMBERS = DRIVER &

 14> FORMAT FLAT_FMT

 15> READ CUST-IN-DB = CUST.CUSTOMERS &

 16> FOR CUST-NO = &

 17> CUST-NUMBERS.CUST-NO

 18> COPY CUST-IN-DB TO HIST.CUSTOMERS

 19> PRINT "Customer:",CUST-NO

 20> READ O = CUST.ORDERS FOR &

 21> CUST-NO = CUST-IN-DB.CUST-NO

 22> COPY O TO HIST.ORDERS

2/3/2005 Chapter Four/Warehouse Script Examples 111

Mixed File Examples

 23> PRINT $TAB 5,ORDER-NO,

 24> PRINT ORDER-DESC

 25> DELETE O

 26> ENDREAD

 27> DELETE CUST-IN-DB

 28> ENDREAD

 29> ENDREAD

 30> GO

 In line 1, Warehouse opens the IMAGE CUST

database using mode 1 and the password PASS and
tags it CUST. In line 2, Warehouse opens the fixed
file DRIVER and tags it DRIVER. In lines 3, and 4,
Warehouse opens the IMAGE database HISTDB
using mode 1 and the password PASS and tags it
HIST.

 In line 5, the record definition of DRIVER is supplied

via the FORMAT statement. DRIVER contains the
CUST-NO field which contains 12 bytes of data. The
end indicates to Warehouse that you are done
defining fields in the format statement.

 In lines 8 through 12, the header which is printed on

the top of every page is defined. This header
statement doesn't belong to a particular report (i.e.
one defined using an open statement), but the
standard report which is printed with every
Warehouse run. Report headers are defined using
the HEADER statement. $TODAY contains the today's
date and $PAGENO contains the current page
number. Notice the use of $CENTER to center the
text on the page. A HEADER statement with no other
fields generates a blank line.

 The selection of records to be archived has already

taken place in the application package. Key values
of the selected records are contained in the file
DRIVER. All that is necessary is to read the contents
of the DRIVER file and archive based on the contents
of that file.

 In the read loop tagged, CUST-NUMBERS, on lines 13

and 14, Warehouse reads the file tagged DRIVER

112 Chapter Four/Warehouse Script Examples 2/3/2005

Mixed File Examples

serially using the format described in the FORMAT
tagged FLAT_FMT.

 In lines 15 through 17, the read loop tagged CUST-

IN-DB reads the CUSTOMERS dataset matching on
the CUST-NO in the CUST-NUMBERS read loop. In
line18, the selected customers are copied to the
CUSTOMERS dataset in the database tagged HIST.
Line 19 prints a line showing the customer number.

 Lines 20 and 21 define the read loop tagged O. In

this read loop, Warehouse reads the ORDERS dataset
in the database tagged CUST matching on the CUST-
NO in the read loop tagged CUST-IN-DB. In line 22,
the selected orders are copied to the ORDERS dataset
in the database tagged HIST. Notice that a report is
being generated during the archival process. The
report could be generated at a later time, but it is
easier to do it while the archival process is occurring.
In line 24, Warehouse deletes the order.

 Finally in line 27, Warehouse deletes the customer.

Comments A common problem is knowing when to use a format

statement and when to use a define statement.
The format statement simply describes the format
of existing data. The define statement creates a
local variable with the record layout that you
describe. So, if you need a place to keep data until
you are ready to write it out, use a define. If you
need to describe the layout of data that already
exists, use a format.

 Producing reports can be accomplished by either

using the standard output, like in this example, or by
using the OPEN statement and opening up a REPORT
type file. If you elect to use the OPEN statement
method, you can create as many reports as your
script requires. To write to a particular report, print
to that report tag, e.g. print [exprpt]
fieldname, field2. For more information on
using this method, see REPORT in the chapter
entitled, Data File Types in the Warehouse

2/3/2005 Chapter Four/Warehouse Script Examples 113

Mixed File Examples

Reference Manual under REPORT file type.

 Using the system constants, like $PAGENO and

$TODAY, can make life simpler. These constants are
describe in the chapter Expressions in the
Warehouse Reference Manual. The dates can be
manipulated to be printed in different formats by
using the date functions also described in that same
chapter.

 The use of other files to drive a Warehouse script is

common. It is sometimes used, as in this example,
because another process has already "pre-selected"
our data for us. Another is example is to take
advantage of SUPRTOOL's MR/NOBUF access
against IMAGE to create a file containing just key
values for Warehouse to base its processing against.
Whatever your reason to use a driver file, Warehouse
is able to integrate files from other sources. This
technique is applicable for all types of projects.

114 Chapter Four/Warehouse Script Examples 2/3/2005

